
The COM Specification Chapter 7. Interface Remoting

1Interface Remoting
In COM, clients communicate with objects solely through the use of vtable-based interface instances. The
state of the object is manipulated by invoking functions on those interfaces. For each interface method,
the object provides an implementation that does the appropriate manipulation of the object internals.
Interface remoting provides the infrastructure and mechanisms to allow a method invocation to return an
interface pointer to an object that is in a different process, perhaps even on a different machine. The
infrastructure that performs the remoting of interfaces is transparent to both the client and the object
server. Neither the client or object server is necessarily aware that the other party is in fact in a different
process.
This chapter first explains how interface remoting works giving mention to the interfaces and COM API
functions involved. The specifications for the interfaces and the API functions themselves are given later
in this chapter. There is also a brief discussion about concurrency management at the end of the chapter
that involves an interface called IMessageFilter.

1.1How Interface Remoting Works
The crux of the problem to be addressed in interface remoting can be stated as follows:

“Given an already existing remoted-interface connection between a client process and a
server process, how can a method invocation through that connection return a new
interface pointer so as to create a second remoted-interface connection between the two
processes?”

We state the problem in this way so as to avoid for the moment the issue of how an initial connection is
made between the client and the server process; we will return to that later.
Let’s look at an example. Suppose we have an
object in a server process which supports an
interface IFoo, and that interface of the object (and
IUnknown) has sometime in the past been remoted to
a client process through some means not here
specified. In the client process, there is an object
proxy which supports the exact same interfaces as
does the original server object, but whose implementations of methods in those interfaces are special, in
that they forward calls they receive on to calls on the real method implementations back in the server
object. We say that the method implementations in the object proxy marshal the data, which is then
conveyed to the server process, where it is unmarshaled. That is, “marshaling” refers to the packaging up
of method arguments for transmission to a remote process; “unmarshaling” refers to the unpackaging of
this data at the receiving end. Notice that in a given call, the method arguments are marshaled and
unmarshaled in one direction, while the return values are marshaled and unmarshaled in the other
direction.
For concreteness, let us suppose that the IFoo interface is defined as follows:

interface IFoo : IUnknown {
IBar * ReturnABar();
};

If the in the client process pFoo->ReturnABar() is invoked, then the object proxy will forward this call on to
the IFoo::ReturnABar() method in the server object, which will do whatever this method is supposed to do in
order to come up with some appropriate IBar*. The server object is then required to return this IBar* back to
the client process. The act of doing this will end up creating a second connection between the two
processes:

DRAFT Page: 1 Copyright © 1995 Microsoft Corporation
 All Rights Reserved

IFoo

Client Process Server Process

IFoo

IUnknown

server
object

IUnknown

object
proxy

Chapter 7. Interface Remoting The COM Specification

It is the procedure by which this second connection is
established which is the subject of our discussion here.
This process involves two steps:

1. On the server side, the IBar* is packaged or marshaled into a data packet.
2. The data packet is conveyed by some means to the client process, where the data it contains

is unmarshaled to create the new object proxy.
The term “marshaling” is a general one that is applied in the industry to the packaging of any particular
data type, not just interface pointers, into a data packet for transmission through an RPC infrastructure.
Each different data type has different rules for how it is to marshaled: integers are to be stored in a
certain way, strings are to be stored in a certain way, etc. 1 Likewise, marshaled interface pointers are to
be stored in a certain way; the Component Object Model function CoMarshalInterface() contains the
knowledge of how this is to be done (note that we will in this document not mention further any kind of
marshaling other than marshaling of interface pointers; that subject is well-explored in existing RPC
systems).
The process begins with the code doing the marshaling of the returned IBar* interface. This code has in
hand a pointer to an interface that it knows in fact to be an IBar* and that it wishes to marshal. To do so it
calls CoMarshalInterface(). The first step in CoMarshalInterface() involves finding out whether the object of
which this is an interface in fact supports custom object marshaling (often simply referred to as “custom
marshaling”). Custom object marshaling is a mechanism that permits an object to be in control of
creation of remote object proxies to itself. In certain situations, custom object marshaling can be used to
create a more efficient object proxy than would otherwise be the case. 2 Use of custom marshaling is
completely optional on the object’s part; if the object chooses not to support custom marshaling, then
standard interface marshaling is used to marshal the IBar*. Standard interface marshaling uses a system-
provided object proxy implementation in the client process. This standard implementation is a generic
piece of code, in that it can be used as the object proxy for any interface on any object. However, the act
of marshaling (and unmarshaling) method arguments and return values is inherently interface-specific,
since it is highly sensitive to the semantics and data types used in the particular methods in question. To
accommodate this, the standard implementation dynamically loads in interface-specific pieces of code as
needed in order to do the parameter marshaling.
We shall discuss in great detail in a moment how standard interface marshaling works. First, however, we
shall review custom object marshaling, as this provides a solid framework in which standard marshaling
can be better understood.

1.2Architecture of Custom Object Marshaling
Imagine that we are presently in a piece of code whose job it is to marshal an interface pointer that it has
in hand. For clarity, in what follows we’ll refer to this piece of code as the “original marshaling stub.”
The general case is that the original marshaling stub does not statically3 know the particular interface
identifier (IID) to which the pointer conforms; the IID may be passed to this code as a second parameter.
This is a common paradigm in the Component Object Model. Extant examples of this paradigm include:

1 In fact, there exist several standard sets of rules, each promoted by a different organization. Two common such sets of rules are
known as “Network Data Representation” (NDR) and “External Data Representation” (XDR) chiefly promoted respectively by the
Open Software Foundation and Sun Microsystems. ASN.1 is another standard for the same sort of technology.

2 Notice here that we’re only discussing the marshaling of pointers to interfaces, and that the term “custom object marshaling”
applies only to the marshaling of this data type. In general in a given remote procedure call the many other kinds of data which
appear as function parameters also needs to be marshaled: strings, integers, structures, etc. We shall not concern ourselves here
with such other data types, but instead concentrate our discussion on marshaling interface pointers.

3 i.e.: at compile time of the original marshaling stub

Copyright © 1995 Microsoft Corporation Page: 2 DRAFT
All Rights Reserved

IFoo

Client Process Server Process

IFoo

IUnknown

server
object

IUnknown

object
proxy

IBar
IBar

IUnknown

server
object

IUnknown

object
proxy

The COM Specification Chapter 7. Interface Remoting

IUnknown::QueryInterface(REFIID riid, void** ppvObject);
IOleItemContainer::GetObject(..., REFIID riid, void** ppvObject);
IClassFactory::CreateInstance(..., REFIID riid, void** ppvNewlyCreatedObject);

Let us assume the slightly less general case where the marshaling stub in fact does know a little bit about
the IID: that the interface in fact derives from IUnknown. This is a requirement for remoting: it is not
possible to remote interfaces which are not derived from IUnknown.
To find out whether the object to which it has an interface supports custom marshaling, the original
marshaling stub simply does a QueryInterface() for the interface IMarshal. That is, an object signifies that it
wishes to do custom marshaling simply by implementing the IMarshal interface. IMarshal is defined as
follows:

[
 local,
 object,
 uuid(00000003-0000-0000-C000-000000000046)
]
interface IMarshal : IUnknown {

HRESULT GetUnmarshalClass ([in] REFIID riid, [in, unique] void *pv,
[in] DWORD dwDestContext, [in, unique] void *pvDestContext,
[in] DWORD mshlflags, [out] CLSID *pCid);

HRESULT GetMarshalSizeMax ([in] REFIID riid, [in, unique] void *pv,
[in] DWORD dwDestContext, [in, unique] void *pvDestContext,
 [in] DWORD mshlflags, [out] DWORD *pSize);

HRESULT MarshalInterface ([in, unique] IStream *pStm, [in] REFIID riid, [in, unique] void *pv,
[in] DWORD dwDestContext, [in, unique] void *pvDestContext, [in] DWORD mshlflags);

HRESULT UnmarshalInterface ([in, unique] IStream *pStm, [in] REFIID riid, [out] void **ppv);
HRESULT ReleaseMarshalData ([in, unique] IStream *pStm);
HRESULT DisconnectObject ([in] DWORD dwReserved);

}

The idea is that if the object says “Yes, I do want to do custom marshaling” that the original marshaling
stub will use this interface in order to carry out the task. The sequence of steps that carry this out is:
1. Using GetUnmarshalClass, the original marshaling stub asks the object which kind of (i.e.: which class

of) proxy object it would like to have created on its behalf in the client process.
2. (optional on the part of the marshaling stub) Using GetMarshalSizeMax, the stub asks the object how

big of a marshaling packet it will need. When asked, the object will return an upper bound on the
amount of space it will need.4

3. The marshaling stub allocates a marshaling packet of appropriate size, then creates an IStream* which
points into the buffer. Unless in the previous step the marshaling stub asked the object for an
upper bound on the space needed, the IStream* must be able to grow its underlying buffer
dynamically as IStream::Write calls are made.

4. The original marshaling stub asks the object to marshal its data using MarshalInterface.
We will discuss the methods of this interface in detail later in this chapter.
At this point, the contents of the memory buffer pointed to by the IStream* together with the class tag
returned in step (1) comprises all the information necessary in order to be able to create the proxy object
in the client process. It is the nature of remoting and marshaling that “original marshaling stubs” such as
we have been discussing know how to communicate with the client process; recall that we are assuming
that an initial connection between the two processes had already been established. The marshaling stub
now communicates to the client process, by whatever means is appropriate, the class tag and the contents
of the memory that contains the marshaled interface pointer. In the client process, the proxy object is
created as an instance of the indicated class using the standard COM instance creation paradigm. IMarshal
is used as the initialization interface; the initialization method is IMarshal::UnmarshalInterface(). The
unmarshaling process looks something like the following:

void ExampleUnmarshal(CLSID& clsidProxyObject, IStream* pstm, IID& iidOriginallyMarshalled, void** ppvReturn)
{

IClassFactory* pcf;
IMarshal* pmsh;
CoGetClassObject(clsidProxyObject, CLSCTX_INPROC_HANDLER, NULL, IID_IClassFactory, (void**)&pcf);
pcf->CreateInstance(NULL, IID_IMarshal, (void**)pmsh);

4 That is, it is explicitly legal for the caller of GetMarshalSizeMax() to allocate a fixed size marshaling buffer containing no more than
the indicated upper bound number of bytes.

DRAFT Page: 3 Copyright © 1995 Microsoft Corporation
 All Rights Reserved

Chapter 7. Interface Remoting The COM Specification

pmsh->UnmarshalInterface(pstm, iidOriginallyMarshalled, ppvReturn);
pmsh->ReleaseMarshalData(pstm)
pmsh->Release();
pcf->Release();

}

There are several important reasons why an object may choose to do custom marshaling.
· It permits the server implementation, transparently to the client, to be in complete control of the

nature of the invocations that actually transition across the network. In designing component
architectures, one often runs into a design tension between the interface which for simplicity and
elegance one wishes to exhibit to client programmers and the interface that is necessary to
achieve efficient invocations across the network. The former, for example, might naturally wish
to operate in terms of small-grained simple queries and responses, whereas the latter might wish
to batch requests for efficient retrieval. The client and the network interfaces are in design
tension; custom marshaling is the crucial hook that allows us to have our cake and eat it too by
giving the server implementor the ability to tune the network interface without affecting the
interface seen by its client.
When the object does custom marshaling, the client loses any "COM provided" communication
to the original object. If the proxy wants to "keep in touch", it has to connect through some other
means (RPC, Named pipe…) to the original object. Custom Object Marshaling can not be done
on a per interface basic, because object identity is lost! Custom Object Marshaling is a
sophisticated way for an object to pass a copy of an existing instance of itself into another
execution context.

· Some objects are of the nature that once they have been created, they are immutable: their internal
state does not subsequently change. Many monikers are an example of such objects. These sorts
of objects can be efficiently remoted by making independent copies of themselves in client
processes. Custom marshaling is the mechanism by which they can do that, yet have no other
party be the wiser for it.

· Objects which already are proxy objects can use custom marshaling to avoid creating proxies to
proxies; new proxies are instead short-circuited back to the original server. This is both an
important efficiency and an important robustness consideration.

· Object implementations whose whole state is kept in shared memory can often be remoted to other
process on the same machine by creating an object in the client that talks directly to the shared
memory rather than back to the original object. This can be a significant performance improve-
ment, since access to the remoted object does not result in context switches. The present
Microsoft Compound File implementation is an example of objects using this kind of custom
marshaling.

1.3Architecture of Standard Interface / Object Marshaling
If the object being marshaled5 chooses not to implement custom object marshaling, a “default” or
“standard” object marshaling technique is used. An important part of this standard marshaling technique
involves locating and loading the interface-specific pieces of code that are responsible for marshaling and
unmarshaling remote calls to instances of that interface. We call these interface-specific pieces of code
used in standard marshaling and unmarshaling “interface proxies” and “interface stubs” respectively. 6 (It
is important not to confuse interface proxies with the object proxy, which relates to the whole
representative in the client process, rather than just one interface on that representative. We apologize for
the subtleties of the terminology.)
The following figure gives an slightly simplified view of how the standard client- and server-side
structures cooperate.

5 Astute readers will notice an abuse of terminology here: what is really being marshaled in hand is one particular interface on the
object, not the whole object, though in fact in the remote process access to the whole process is indeed obtained: new interfaces on
the object will be marshaled later as needed. We trust that this will not lead to too much confusion.

6 Other RPC systems sometimes instead call these “client side stubs” and “server side stubs.” Sometimes we mix things up a bit and
refer to “proxy interfaces” and “stub interfaces” instead of “interface proxies” and “interface stubs.”

Copyright © 1995 Microsoft Corporation Page: 4 DRAFT
All Rights Reserved

The COM Specification Chapter 7. Interface Remoting

When an interface of type IFoo needs to be remoted, a system registry is consulted under a key derived
from IID_IFoo to locate a class id that implements the interface proxy and interface stub for the given
interface. Both the interface proxies and the interface stubs for a given interface must be implemented by
the same class. Most often, this class is automatically generated by a tool whose input is a description of
the function signatures and semantics of the interface, written in some “interface description language,”
often known as “IDL.” However, while highly recommended and encouraged for accuracy’s sake, the use
of such a tool is by no means required; interface proxies and stubs are merely Component Object Model
components which are used by the RPC infrastructure, and as such, can be written in any manner desired
so long as the correct external contracts are upheld. From a logical perspective, it is ultimately the
programmer who is the designer of a new interface who is responsible for ensuring that all interface
proxies and stubs that ever exist agree on the representation of their marshaled data. The programmer
has the freedom to achieve this by whatever means he sees fit, but with that freedom comes the
responsibility for ensuring the compatibility.
In the figure, the “stub manager” is “conceptual” in the sense that while it useful in this documentation to
have a term to refer to the pieces of code and state on in the server-side RPC infrastructure which service
the remoting of a given object, there is no direct requirement that the code and state take any particular
well-specified form.7 In contrast, on the client side, there is an identifiable piece of state and associated
behavior which appears to the client code to be the one, whole object. The term “proxy manager” is used
to refer to the COM Library provided code that manages the client object identity, etc., and which
dynamically loads in interface proxies as needed (per QueryInterface calls). The proxy manager implemen-
tation is intimate with the client-side RPC channel implementation, and the server-side RPC channel
implementation is intimate with the stub manager implementation.
Interface proxies are created by the client-side COM Library infrastructure using a code sequence
resembling the following:

clsid = LookUpInRegistry(key derived from iid)
CoGetClassObject(clsid, CLSCTX_SERVER, NULL, IID_IPSFactoryBuffer, &pPSFactory));
pPSFactory->CreateProxy(pUnkOuter, riid, &pProxy, &piid);

Interface stubs are created by the server-side RPC infrastructure using a code sequence resembling:
clsid = LookUpInRegistry(key derived from iid)
CoGetClassObject(clsid, CLSCTX_SERVER, NULL, IID_IPSFactoryBuffer, &pPSFactory));
pPSFactory->CreateStub(iid, pUnkServer, &pStub);

In particular, notice that the class object is talked-to with IPSFactoryBuffer interface rather than the more
common IClassFactory.
The interfaces mentioned here are as follows:

interface IPSFactoryBuffer : IUnknown {
HRESULT CreateProxy(pUnkOuter, iid, ppProxy, ppv);

7 There are, however, implied requirements for the existence of some piece of code / state that manages the entire set of external
remoting connections for a given object. See CoLockObjectExternal(), for example.

DRAFT Page: 5 Copyright © 1995 Microsoft Corporation
 All Rights Reserved

IUnknown......

IUnknown

IFoo IBar IBaz
interface proxies
(for IFoo, IBar, and IBaz)

IRpcProxyBuffer IRpcStubBuffer

Client Process Server Process

IRpcChannelBuffer

interface stubs
(for IFoo, IBar, and IBaz)

IFoo

IBar

IBaz

server
object

proxy manager
stub manager

object proxy

channel to
stub mgr comm’n
is private

RPC Channel
(conceptual)

Simplified conceptual view of client - server remoting structures

Chapter 7. Interface Remoting The COM Specification

HRESULT CreateStub(iid, pUnkServer, ppStub);
};

interface IRpcChannelBuffer : IUnknown {
HRESULT GetBuffer(pMessage, riid);
HRESULT SendReceive(pMessage, pStatus);
HRESULT FreeBuffer(pMessage);
HRESULT GetDestCtx(pdwDestCtx, ppvDestCtx);
HRESULT IsConnected();
};

interface IRpcProxyBuffer : IUnknown {
HRESULT Connect(pRpcChannelBuffer);
void Disconnect();
};

interface IRpcStubBuffer : IUnknown {
HRESULT Connect(pUnkServer);
void Disconnect();
HRESULT Invoke(pMessage, pChannel);
IRPCStubBuffer* IsIIDSupported(iid);
ULONG CountRefs();
HRESULT DebugServerQueryInterface(ppv);
void DebugServerRelease(pv);
};

Suppose an interface proxy receives a method invocation on one of it’s interfaces (such as IFoo, IBar, or
IBaz in the above figure). The interface proxy’s implementation of this method first obtains a marshaling
packet from its RPC channel using IRpcChannelBuffer::GetBuffer(). The process of marshaling the arguments
will copy data into the buffer. When marshaling is complete, the interface proxy invokes IRpcChan-
nelBuffer::SendReceive() to send the method invocation across the “wire” to the corresponding interface
stub. When IRpcChannelBuffer::SendReceive() returns, the contents of buffer into which the arguments were
marshaled will have been replaced by the return values marshaled from the interface stub. The interface
proxy unmarshals the return values, invokes IRpcChannelBuffer::FreeBuffer() to free the buffer, then returns
the return values to the original caller of the method.
It is the implementation of IRpcChannelBuffer::SendReceive() that actually sends the request over to the
server process. It is only the channel who knows or cares how to identify the server process and object
within that process to which the request should be sent; this encapsulation allows the architecture we are
describing here to function for a variety of different kinds of channels: intra-machine channels, inter-
machine channels (i.e.: across the network), etc. The channel implementation knows how to forward the
request onto the appropriate stub manager object in the appropriate process. From the perspective of this
specification, the channel and the stub manager are intimate with each other (and intimate with the proxy
manager, for that matter). Through this intimacy, eventually the appropriate interface stub receives an
IRpcStubBuffer::Invoke() call. The stub unmarshals the arguments from the provided buffer, invokes the
indicated method on the server object, and marshals the return values back into a new buffer, allocated by
a call to IRpcChannelBuffer::GetBuffer(). The stub manager and the channel then cooperate to ferry the return
data packet back to the interface proxy, who is still in the middle of IRpcChannelBuffer::SendReceive().
IRpcChannelBuffer::SendReceive() returns to the proxy, and we proceed as just described above.
When created, interface proxies are always aggregated into the larger object proxy: at interface-proxy-
creation time, the proxy is given the IUnknown* to which it should delegate its QueryInterface(), etc., calls, as
per the usual aggregation rules. When connected, the interface proxy is also given (with IRpcProxyBuffer::-
Connect()) a pointer to an IRpcChannelBuffer interface instance. It is through this pointer that the interface
proxy actually sends calls to the server process. Interface proxies bring a small twist to the normal
everyday aggregation scenario. In aggregation, each interface supported by an aggregateable object is
classified as either “external” or “internal.” External interfaces are the norm. They are the ones whose
instances are exposed directly to the clients of the aggregate as whole. It is always the case that a
QueryInterface() that requests an external interface of an aggregated object should be delegated by the
object to its controlling unknown (ditto for AddRef() and Release()). Internal interfaces, on the other hand,
are never exposed to outside clients. Instead, they are solely for the use of the controlling unknown in
manipulating the aggregated object. QueryInterface() for internal interfaces should never be delegated to the
controlling unknown (ditto again). In the common uses of aggregation, the IUnknown interface on the

Copyright © 1995 Microsoft Corporation Page: 6 DRAFT
All Rights Reserved

The COM Specification Chapter 7. Interface Remoting

object is the only internal interface. The twist that interface proxies bring is that IRpcProxyBuffer is also an
internal interface.
Interface stubs, by contrast with interface proxies, are not aggregated, since there is no need that they
appear to some external client to be part of a larger whole. When connected, an interface stub is given
(with IRpcStubBuffer::Connect()) a pointer to the server object to which they should forward invocations that
they receive.
A given interface proxy instance can if it chooses to do so service more than one interface. For example,
in the above figure, one interface proxy could have chosen to service both IFoo and IBar. To accomplish
this, in addition to installing itself under the appropriate registry entries, the proxy should support Query-
Interface()ing from one supported interface (and from IUnknown and IRpcProxyBuffer) to the other interfaces,
as usual. When the Proxy Manager in a given object proxy finds that it needs the interface proxy for some
new interface that it doesn’t already have, before it goes out to the registry to load in the appropriate code
using the code sequence described above, it first does a QueryInterface() for the new interface id (IID) on all
of its existing interface proxies. If one of them supports the interface, then it is used rather than loading a
new interface proxy.
Interface stub instances, too, can service more than one interface on a server object. However, the extent
to which they can do so is quite restricted: a given interface stub instance may support one or more inter -
faces only if that set of interfaces has in fact a strict single-inheritance relationship. In short, a given
interface stub needs to know how to interpret a given method number that it is asked to invoke without at
that same time also being told the interface id (IID) in which that method belongs; the stub must already
know the relevant IID. The IID which an interface stub is initially created to service is passed as parameter
to IPSFactoryBuffer::CreateStub(). After creation, the interface stub may from time to time be asked using
IRpcStubBuffer::IsIIDSupported() if it in fact would also like be used to service another IID. If the stub also
supports the second IID, then it should return the appropriate IRpcStubBuffer* for that IID; otherwise, the stub
buffer should return NULL. This permits the stub manager in certain cases to optimize the loading of
interface stubs.
Both proxies and stubs will at various times have need to allocate or free memory. Interface proxies, for
example, will need to allocate memory in which to return out parameters to their caller. In this respect
interface proxies and interface stubs are just normal Component Object Model components, in that they
should use the standard task allocator; see CoGetMalloc(). See also the earlier discussion regarding specific
rules for passing in, out, and in out pointers.
On Microsoft Windows platforms, the “key derived from IID” under which the registry is consulted to
learn the proxy/stub class is as follows:

Interfaces
{IID}

ProxyStubClsid32 = {CLSID}

Here {CLSID} is a shorthand for any class id; the actual value of the unique id is put between the {}'s; e.g.
{DEADBEEF-DEAD-BEEF-C000-000000000046}; all digits are upper case hex and there can be no spaces. This
string format for a unique id (without the {}’s) is the same as the OSF DCEä standard and is the result of
the StringFromCLSID routine. {IID} is a shorthand for an interface id; this is similar to {CLSID}; StringFromIID
can be used to produce this string.

1.4Architecture of Handler Marshaling
Handler marshaling is a third variation on marshaling, one closely related to standard marshaling.
Colloquially, one can think of it as a middle ground between raw standard marshaling and full custom
marshaling.
In handler marshaling, the object specifies that it would like to have some amount of client-side state;
this is designated by the class returned by IStdMarshalInfo::GetClassForHandler. However, this handler class
rather than fully taking over the remoting to the object instead aggregates in the default handler, which
carries out the remoting in the standard manner as described above.

DRAFT Page: 7 Copyright © 1995 Microsoft Corporation
 All Rights Reserved

Chapter 7. Interface Remoting The COM Specification

1.5Standards for Marshaled Data Packets
In the architecture described here, nothing has yet to be said about representation or format standards for
the data that gets placed in marshaling packets. There is a good reason for this. In the Component Object
Model architecture, the only two parties that have to agree on what goes into a marshaling packet are the
code that marshals the data into the packet and the code that unmarshals it out again: the interface proxies
and the interface stubs. So long as we are dealing only with intra-machine procedure calls (i.e.: non-
network), then we can reasonably assume that pairs of interface proxies and stubs are always installed to -
gether on the machine. In this situation, we have no need to specify a packet format standard; the packet
format can safely be a private matter between the two piece of code.
However, once a network is involved, relying on the simultaneous installation of corresponding interface
proxies and stubs (on different machines) is no longer a reasonable thing to do. Thus, when the a method
invocation is in fact remoted over a network, it is strongly recommended that the data marshaled into the
packet to conform to a published standard (NDR), though, as pointed out above, it is technically the
interface-designer’s responsibility to achieve this correspondence by whatever means he sees fit.

1.6Creating an Initial Connection Between Processes
Earlier we said we would later discuss how an initial remoting connection is established between two
processes. It is now time to have that discussion.
The real truth of the matter is that the initial connection is established by some means outside of the
architecture that we have been discussing here. The minimal that is required is some primitive com -
munication channel between the two processes. As such, we cannot hope to discuss all the possibilities.
But we will point out some common ones.
One common approach is that initial connections are established just like other connections: an interface
pointer is marshaled in the server process, the marshaled data packet is ferried the client process, and it is
unmarshaled. The only twist is that the ferrying is done by some means other than the RPC mechanism
which we’ve been describing. There are many ways this could be accomplished. The most important, by
far is one where the marshaled data is passed as an out-parameter from an invocation on a well-known
endpoint to a Service Control Manager.

1.7Marshaling Interface and Function Descriptions
Having discussed on a high level how various remoting related interfaces work together, we now present
each of them in detail.

1.7.1IPSFactoryBuffer Interface
IPSFactoryBuffer is the interface through which proxies and stubs are created. It is used to create proxies
and stubs that support IRpcProxyBuffer and IRpcStubBuffer respectively. Each proxy / stub DLL must support
IPSFactory interface on the class object accessible through its DllGetClassObject() entry point. As was
described above, the registry is consulted under a key derived from the IID to be remoted in order to learn
the proxy/stub class that handles the remoting of the indicated interface. The class object for this class is
retrieved, asking for this interface. A proxy or a stub is then instantiated as appropriate.

interface IPSFactoryBuffer : IUnknown {
HRESULT CreateProxy(pUnkOuter, iid, ppProxy, ppv);
HRESULT CreateStub(iid, pUnkServer, ppStub);
};

IPSFactoryBuffer::CreateProxy
HRESULT IPSFactoryBuffer::CreateProxy(pUnkOuter, iid, ppProxy, ppv)
Create a new interface proxy object. This function returns both an IRpcProxy instance and an instance of
the interface which the proxy is being created to service in the first place. The newly created proxy is
initially in the unconnected state.

Copyright © 1995 Microsoft Corporation Page: 8 DRAFT
All Rights Reserved

The COM Specification Chapter 7. Interface Remoting

Argument Type Description
pUnkOuter IUnknown * the controlling unknown of the aggregate in which the proxy is being

created.
iid REFIID the interface id which the proxy is being created to service, and of

which an instance should be returned through ppv.
ppProxy IRpcProxyBuffer** on exit, contains the new IRpcProxyBuffer instance.
ppv void ** on exit, contains an interface pointer of type indicated by iid.
return value HRESULT S_OK, E_OUTOFMEMORY, E_NOINTERFACE, E_UNEXPECTED, no others.

IPSFactoryBuffer::CreateStub
HRESULT IPSFactoryBuffer::CreateStub(iid, pUnkServer, ppStub)
Create a new interface stub object. The stub is created in the connected state on the object indicated by
pUnkServer.
If pUnkServer is non-NULL, then before this function returns the stub must verify (by using QueryInterface())
that the server object in fact supports the interface indicated by iid. If it does not, then this function should
fail with the error E_NOINTERFACE.
Argument Type Description
iid REFIID the interface that the stub is being created to service
pUnkServer IUnknown* the server object that is being remoted. The stub should delegate

incoming calls (see IRpcStubBuffer::Invoke()) to the appropriate interface
on this object. pUnkServer may legally be NULL, in which case the
caller is responsible for later calling IRpcStubBuffer::Connect() before
using IRpcStubBuffer::Invoke().

ppStub IRpcStubBuffer** the place at which the newly create stub is to be returned.
return value HRESULT S_OK, E_OUTOFMEMORY, E_NOINTERFACE, E_UNEXPECTED, no others.

1.7.2IRpcChannelBuffer interface
IRpcChannelBuffer is the interface through which interface proxies send calls through to the corresponding
interface stub. This interface is implemented by the RPC infrastructure. The infrastructure provides an
instance of this interface to interface proxies in IRpcProxyBuffer::Connect(). The interface proxies hold on to
this instance and use it each time they receive an incoming call.

interface IRpcChannelBuffer : IUnknown {
HRESULT GetBuffer(pMessage, riid);
HRESULT SendReceive(pMessage, pStatus);
HRESULT FreeBuffer(pMessage);
HRESULT GetDestCtx(pdwDestCtx, ppvDestCtx);
HRESULT IsConnected();
};

RPCOLEMESSAGE and related structures
Common to several of the methods in IRpcChannelBuffer is a data structure of type RPCOLEMESSAGE. This
structure is defined as is show below. The structure is to be packed so that there are no holes in its
memory layout.

typedef struct RPCOLEMESSAGE {
void * reserved1;
RPCOLEDATAREP dataRepresentation; // in NDR transfer syntax: info about endianness, etc.
void * pvBuffer; // memory buffer used for marshalling
ULONG cbBuffer; // size of the marshalling buffer
ULONG iMethod; // the method number being invoked
void * reserved2[5];
ULONG rpcFlags;
} on the ultimate destination machine MESSAGE;8

8 The layout of this structure is as odd as it is for historical reasons. Apologies are extended to those whose design aesthetics are
offended.

DRAFT Page: 9 Copyright © 1995 Microsoft Corporation
 All Rights Reserved

Chapter 7. Interface Remoting The COM Specification

The most significant member of this structure is pvBuffer. It is through the memory buffer to which pvBuffer
points that marshaled method arguments are transferred. cbBuffer is used to indicate the size of the buffer.
iMethod is indicates a particular method number within the interface being invoked. The IID of that
interface is identified through other means: on the client side as a parameter to GetBuffer(), and on the
server side as part of the internal state of each interface stub.
At all times all reserved values in this structure are to be initialized to zero by non-RPC-infrastructure
parties (i.e.: parties other than the channel / RPC runtime implementor) who allocate RPCOLEMESSAGE
structures. However, the RPC channel (more generally, the RPC runtime infrastructure) is free to modify
these reserved fields. Therefore, once initialized, the reserved fields must be ignored by the initializing
code; they cannot be relied on to remain as zero. Further, there are very carefully specified rules as to
what values in these structures may or may not be modified at various times and by which parties. In
almost all cases, aside from actually reading and writing data from the marshaling buffer, which is done
by proxies and stubs, only the channel may change these fields. See the individual method descriptions
for details.
Readers familiar with the connection-oriented DCE protocol may notice that the “transfer syntax” used
for marshaling the arguments, the particular set of rules and conventions according to which data is
marshaled, is not explicitly called out. Architecturally speaking, it is only the interface proxy for a given
interface and its corresponding interface stub that cares at all about what set of marshaling rules is in fact
used. However, in the general case these interface proxies and stubs may be installed on different ma-
chines with a network in the middle, be written by different development organizations on different oper -
ating systems, etc. Accordingly, in cases where the author of an interface proxy for a given IID cannot
guarantee that all copies of the corresponding interface stub are in fact always revised and updated in
synchrony with his interface proxy, a well-defined convention should be used for the transfer syntax.
Indeed, formal transfer syntax standards exist for this purpose. The one most commonly used is known as
“Network Data Representation” (NDR), originally developed by Apollo Corporation and subsequently
enhanced and adopted by the Open Software Foundation as part of their Distributed Computing Environ-
ment (DCE). The Windows NT operating system also uses NDR in its RPC implementation. Unless very
good reasons exist to do otherwise, programmers are encouraged to use the NDR transfer syntax.
When NDR transfer syntax is used (and whether it is in use or not is implicitly known by the proxy or
stub), the member dataRepresentation provides further information about the rules by which data in the
buffer is marshaled. NDR is a “multi-canonical” standard, meaning that rather than adopting one stan dard
for things like byte-order, character set, etc., multiple standards (a fixed set of them) are accommodated.
Specifically, this is accommodated by a “reader make right” policy: the writer / marshaler of the data is
free to write the data in any of the supported variations and the reader / unmarshaler is expected to be
able to read any of them. The particular data type in use is conveyed in an RPCOLEDATAREP structure,
which is defined as follows. Note that this structure, too, is packed; the size of the entire structure is ex -
actly four bytes. The actual layout of the structure in all cases always corresponds to the data representa -
tion value as defined in the DCE standard; the particular structure shown here is equivalent to that layout
in Microsoft’s and other common compilers.

typedef RPCOLEDATAREP {
UINT uCharacterRep : 4; // least signficant nibble of first byte
UINT uByteOrder : 4; // most signficant nibble of first byte
BYTE uFloatRep;
BYTE uReserved;
BYTE uReserved2;
} RPCOLEDATAREP;

The values which may legally be found in these fields are as shown in Table 1. Further information on
the interpretation of this field can be found in the NDR Transfer Syntax standards documentation.
Field Name Meaning of Field Value in field Interpretation
uCharacterRep determines interpretation of single-byte-

character valued and single-byte-string
valued entities

0
1

ASCII
EBCDIC

uByteOrder integer and floating point byte order 0
1

Big-endian (Motorola)
Little-endian (Intel)

uFloatRep representation of floating point numbers 0 IEEE

Copyright © 1995 Microsoft Corporation Page: 10 DRAFT
All Rights Reserved

The COM Specification Chapter 7. Interface Remoting

1
2
3

VAX
Cray
IBM

Table 2. Interpretation of dataPresentation

IRpcChannelBuffer::GetBuffer
HRESULT IRpcChannelBuffer::GetBuffer(pMessage, iid)
This method returns a buffer into which data can be marshaled for subsequent transmission over the wire.
It is used both by interface proxies and by interface stubs, the former to marshal the incoming arguments
for transmission to the server, and the latter to marshal the return values back to the client.
Upon receipt of an incoming call from the client of the proxy object, interface proxies use GetBuffer() to
get a buffer into which they can marshaling the incoming arguments. A new buffer must be obtained for
every call operation; old buffers cannot be reused by the interface proxy. The proxy needs to ask for and
correctly manage a new buffer even if he himself does not have arguments to marshal (i.e.: a void
argument list).9 Having marshaled the arguments, the interface proxy then calls SendReceive() to actually
invoke the operation. Upon return from SendReceive(), the buffer no longer contains the marshaled
arguments but instead contains the marshaled return values (and out parameter values). The interface
proxy unmarshals these values, calls FreeBuffer() to free the buffer, then returns to its calling client.
On the server side (in interface stubs), the sequence is somewhat different. The server side will not be
explored further here; see instead the description of IRpcStubBuffer::Invoke() for details.
On the client side, the RPCOLEMESSAGE structure argument to GetBuffer() has been allocated and initial-
ized by the caller (or by some other party on the caller’s behalf). Interface proxies are to initialize the
members of this structure as follows.
Member Name Value to initalize to
reserved members as always, reserved values must be initialized to zero / NULL.
pvBuffer must be NULL.
cbBuffer the size in bytes that the channel should allocate for the buffer; that is, the

maximum size in bytes needed to marshal the arguments. The interface proxy
will have determined this information by considering the function signature
and the particular argument values passed in.
It is explicitly legal to have this value be zero, indicating that that the caller
does not himself require a memory buffer.

iMethod the zero-based method number in the interface iid which is being invoked
dataRepresentation if NDR transfer syntax is being used, then this indicates the byte order, etc., by

which the caller will marshal data into the returned buffer.
rpcFlags ¨ Exact values to be listed here.

If the GetBuffer() function is successful, then upon function exit pvBuffer will have been changed by the
channel to point to a memory buffer of (at least) cbBuffer bytes in size into which the method arguments
can now be marshaled (if cbBuffer was zero, pvBuffer may or may not be NULL). The reserved fields in the
RPCOLEMESSAGE structure may or may not have been changed by the channel. However, neither the
cbBuffer nor iMethod fields of RPCOLEMESSAGE will have been changed; the channel treats these as read-
only.10 Furthermore, until such time as the now-allocated memory buffer is subsequently freed (see
SendReceive() and FreeBuffer()), no party other than the channel may modify any of the data accessible from
pMessage with the lone exceptions of the data pointed to by pvBuffer and the member cbBuffer, which may
be modified only in limited ways; see below.

9 This permits the channel to behind-the-scenes add additional space into the buffer. Such a capability is needed, for example, in
order to support remote debugging.

10 The fact that cbBuffer is unchanged can be of particular use to interface stubs. See IRpcStubBuffer::Invoke().

DRAFT Page: 11 Copyright © 1995 Microsoft Corporation
 All Rights Reserved

Chapter 7. Interface Remoting The COM Specification

The arguments to GetBuffer() are as follows:
Argument Type Description
pMessage RPCOLEMESSAGE * a message structure initialized as discussed above.
iid REFIID the interface identifier of the interface being invoked.
return value HRESULT S_OK, E_OUTOFMEMORY, E_UNEXPECTED

IRpcChannelBuffer::SendReceive
HRESULT IRpcChannelBuffer::SendReceive(pMessage, pStatus)
Cause an invocation to be sent across to the server process. The caller will have first obtained access to a
transmission packet in which to marshal the arguments by calling IRpcChannelBuffer::GetBuffer(). The same
pMessage structure passed as an argument into that function is passed here to the channel a second time.
In the intervening time period, the method arguments will have been marshaled into the buffer pointed to
by pMessage->pvBuffer. However, the pvBuffer pointer parameter must on entry to SendReceive() be exactly as
it was when returned from GetBuffer(). That is, it must point to the start of the memory buffer. The caller
should in addition set pMessage->cbBuffer to the number of bytes actually written into the buffer (zero is
explicitly a legal value). No other values accessible from pMessage may be different than they were on
exit from GetBuffer().
Upon successful exit from SendReceive(), the incoming buffer pointed to by pvBuffer will have been freed
by the channel. In its place will be found a buffer containing the marshaled return values / out parameters
from the interface stub: pMessage->pvBuffer points to the new buffer, and pMessage->cbBuffer indicates the
size thereof. If there are no such return values, then pMessage->cbBuffer is set to zero, while pMessage->pv-
Buffer may or may not be NULL.
On error exit from SendReceive(),11 the incoming buffer pointed to by pvBuffer may or may not have been
freed. If it has been freed, then on error exit pMessage->pvBuffer is set to NULL and pMessage->cbBuffer is set
to zero. If in contrast, pMessage->pvBuffer is on error exit not NULL, then that pointer, the data to which it
points, and the value pMessage->cbBuffer will contain exactly as they did on entry; that is, the marshaled
arguments will not have been touched. Thus, on error exit from SendReceive(), in no case are any
marshaled return values passed back; if a marshaling buffer is in fact returned, then it contains the
marshaled arguments as they were on entry.
The exact cases on error exit when the incoming buffer has or has not been freed needs careful attention.
There are three cases:

1) The channel implementation knows with certainty either that all of the incoming data was
successfully unmarshaled or that if any errors occurred during unmarshaling that the inter -
face stub correctly cleaned up. In practical terms, this condition is equivalent to the stub
manager having actually called IRpcStubBuffer::Invoke() on the appropriate interface stub.
In this case, on exit from SendReceive() the incoming arguments will always have been freed.

2) The channel implementation knows with certainty the situation in case 1) has not occurred.
In this case, on exit from SendReceive(), the incoming arguments will never have been freed.

3) The channel implementation does not know with certainty that either of the above two cases
has occurred.
In this case, on exit from SendReceive(), the incoming arguments will always have been
freed. This is a possible resource leakage (due to, for example, CoReleaseMarshalData() calls
that never get made), but it safely avoids freeing resources that should not be freed.

If pMessage->pvBuffer is returned as non-NULL, then the caller is responsible for subsequently freeing it; see
FreeBuffer(). A returned non-NULL pMessage->pvBuffer may in general legally be (and will commonly be, the
success case) different than the (non-NULL) value on entry; i.e.: the buffer may be legally be reallocated.
Further, between the return from SendReceive() and the subsequent freeing call no data accessible from
pMessage may be modified, with the possible exception of the data actually in the memory buffer.

11 That is, if SendReceive() returns an error. Note that this does NOT indicate an error returned from the function invocation on the
server object, for in that case SendReceive() returns success; rather, it indicates an error that occurred somewhere in the RPC
transmission.

Copyright © 1995 Microsoft Corporation Page: 12 DRAFT
All Rights Reserved

The COM Specification Chapter 7. Interface Remoting

Upon successful exit from SendReceive(), the pMessage->dataRepresentation field will have been modified to
contain whatever was returned by the interface stub in field of the same name value on exit to
IRpcStubBuffer::Invoke(). This is particularly important when NDR transfer syntax is used, as
dataRepresentation indicates critical things (such as byte order) which apply to the marshaled return / out
values. Upon error exit from SendReceive(), pMessage->dataRepresentation is undefined.
Argument Type Description
pMessage RPCOLEMESSAGE * message structure containing info to transmit to server.
pStatus ULONG * may legally be NULL. If non-NULL, then if either 1) an RPC-

infrastructure-detected server-object fault (e.g.: a server
object bug caused an exception which was caught by the
RPC infrastructure) or 2) an RPC communications failure
occurs, then at this location a status code is written which
describes what happened. In the two error cases, the errors
E_RPCFAULT and E_RPCSTATUS are (respectively) returned
(and are always returned when these errors occur,
irrespective of the NULL-ness of pStatus).

return value HRESULT S_OK, E_RPCFAULT, E_RPCSTATUS

IRpcChannelBuffer::FreeBuffer
HRESULT IRpcChannelBuffer::FreeBuffer(pMessage)
Free a memory buffer in pMessage->pvBuffer that was previously allocated by the channel.
At various times the RPC channel allocates a memory buffer and returns control of same to a calling
client. Both GetBuffer() and SendReceive() do so, for example. FreeBuffer() is the means by which said calling
client informs the channel that it is done with the buffer.
On function entry, the buffer which is to be freed is pMessage->pvBuffer, which explicitly may or may not
be NULL. If pMessage->pvBuffer is non-NULL, then FreeBuffer() frees the buffer, NULLs the pointer, and returns
NOERROR; if pMessage->pvBuffer is NULL, then FreeBuffer() simply returns NOERROR (i.e.: passing NULL is
not an error). Thus, on function exit, pMessage->pvBuffer is always NULL. Notice that pMessage->cbBuffer is
never looked at or changed.
There are strict rules as to what data accessible from pMessage may have been modified in the intervening
time between the time the buffer was allocated and the call to FreeBuffer(). In short, very little
modification is permitted; see above and below for precise details.
Argument Type Description
pMessage RPCOLEMESSAGE * pointer to structure containing pointer to buffer to free.
return value HRESULT S_OK, E_UNEXPECTED

IRpcChannelBuffer::GetDestCtx
HRESULT IRpcChannelBuffer::GetDestCtx(pdwDestCtx, ppvDestCtx)
Return the destination context for this RPC channel. The destination context here is as specified in the
description of the IMarshal interface.

DRAFT Page: 13 Copyright © 1995 Microsoft Corporation
 All Rights Reserved

Chapter 7. Interface Remoting The COM Specification

Argument Type Description
pdwDestCtx DWORD * the place at which the destination context is to be returned.
ppvDestCtx void ** May be NULL. If non-NULL, then this is the place at which auxiliary

information associated with certain destination contexts will be
returned. Interface proxies may not hold on to this returned pointer in
their internal state; rather, they must assume that a subsequent call to
IRpcChannel::Call() may in fact invalidate a previously returned destina-
tion context.12

return value HRESULT S_OK, E_OUTOFMEMORY, E_UNEXPECTED, but no others.

IRpcChannelBuffer::IsConnected
HRESULT IRpcChannelBuffer::IsConnected()
Answers as to whether the RPC channel is still connected to the other side. A negative reply is definitive:
the connection to server end has definitely been terminated. A positive reply is tentative: the server end
may or may not be still up. Interface proxies can if they wish use this method as an optimization by
which they can quickly return an error condition.
Argument Type Description
return value HRESULT S_OK, S_FALSE. No error values may be returned.

1.7.3IRpcProxyBuffer Interface
IRpcProxyBuffer interface is the interface by which the client-side infrastructure (i.e. the proxy manager)
talks to the interface proxy instances that it manages. When created, proxies are aggregated into some
larger object as per the normal creation process (where pUnkOuter in IPSFactoryBuffer::CreateProxy() is non-
NULL). The controlling unknown will then QueryInterface() to the interface that it wishes to expose from the
interface proxy.

interface IRpcProxyBuffer : IUnknown {
virtual HRESULT Connect(pRpcChannelBuffer) = 0;
virtual void Disconnect() = 0;
};

IRpcProxyBuffer::Connect
HRESULT IRpcProxyBuffer::Connect(pRpcChannelBuffer)
Connect the interface proxy to the indicated RPC channel. The proxy should hold on to the channel,
AddRef()ing it as per the usual rules. If the proxy is currently connected, then this call fails (with
E_UNEXPECTED); call Disconnect() first if in doubt.
Argument Type Description
pRpcChannelBuffer IRpcChannelBuffer* the RPC channel that the interface proxy is to use to effect

invocations to the server object. May not be NULL.
return value HRESULT S_OK, E_OUTOFMEMORY, E_NOINTERFACE, E_UNEXPECTED

IRpcProxyBuffer::Disconnect
void IRpcProxyBuffer::Disconnect()
Informs the proxy that it should disconnect itself from any RPC channel that it may currently be holding
on to. This will involve Release()ing the IRpcChannel pointer to counteract the AddRef() done in
IRpcProxy::Connect().

Notice that this function does not return a value.

12 It is possible that in the future a less restrictive rule as to the duration in which the interface proxy may hold on to ppvDestCtxt may
be established, such as (perhaps) guaranteeing that the pointer is valid for the lifetime of the interface proxy itself. However, as it
stands today, the rule, as stated here, is in fact the law.

Copyright © 1995 Microsoft Corporation Page: 14 DRAFT
All Rights Reserved

The COM Specification Chapter 7. Interface Remoting

1.7.4IRpcStubBuffer interface
IRpcStubBuffer is the interface used on the server side by the RPC runtime infrastructure (herein referred to
loosely as the “channel”) to communicate with interface stubs that it dynamically loads into a server
process.

interface IRpcStubBuffer : IUnknown {
virtual HRESULT Connect(pUnkServer) = 0;
virtual void Disconnect() = 0;
virtual HRESULT Invoke(pMessage, pChannel) = 0;
virtual IRpcStubBuffer* IsIIDSupported(iid) = 0;
virtual ULONG CountRefs() = 0;
virtual HRESULT DebugServerQueryInterface(ppv) = 0;
virtual void DebugServerRelease(pv) = 0;
};

IRpcStubBuffer::Connect
HRESULT IRpcStubBuffer::Connect(pUnkServer)
Informs the interface stub of server object to which it is now to be connected, and to which it should
forward all subsequent Invoke() operations. The stub will have to QueryInterface() on pUnkServer to obtain
access to appropriate interfaces. The stub will of course follow the normal AddRef() rules when it stores
pointers to the server object in its internal state.
If the stub is currently connected, then this call fails with E_UNEXPECTED.
Argument Type Description
pUnkServer IUnknown * the new server object to which this stub is now to be connected.
return value HRESULT S_OK, E_OUTOFMEMORY, E_NOINTERFACE, E_UNEXPECTED

IRpcStubBuffer::Disconnect
void IRpcStubBuffer::Disconnect()
Informs the stub that it should disconnect itself from any server object that it may currently be holding on
to. Notice that this function does not return a value.

IRpcStubBuffer::Invoke
HRESULT IRpcStubBuffer::Invoke(pMessage, pChannel)
Invoke the pMessage->iMethod’th method in the server object interface instance to which this interface stub
is currently connected. The RPC runtime infrastructure (the “channel”) calls this method on the
appropriate interface stub upon receipt of an incoming request from some remote client. See the
discussion on page 7 regarding how interface stubs implicitly know the IID which they are servicing.
On entry, the members of pMessage are set as follows:
Member Name Value on entry to Invoke()

reserved members indeterminate. These members are neither to be read nor to be changed by the
stub.

pvBuffer points to a buffer which contains the marshaled incoming arguments. In the
case that there are no such arguments (i.e.: cbBuffer == 0), pvBuffer may be NULL,
but will not necessarily be so.

cbBuffer the size in bytes of the memory buffer to which pvBuffer points. If pvBuffer is
NULL, then cbBuffer will be zero (but the converse is not necessarily true, as was
mentioned in pvBuffer).

iMethod the zero-based method number in the interface which is being invoked
dataRepresentation if NDR transfer syntax is being used, then this indicates the byte order, etc.,

according to which the data in pvBuffer has been marshaled.
rpcFlags indeterminate. Neither to be read nor to be changed by the stub.

The stub is to do the following:

DRAFT Page: 15 Copyright © 1995 Microsoft Corporation
 All Rights Reserved

Chapter 7. Interface Remoting The COM Specification

· unmarshal the incoming arguments,
· invoke the designated operation in the server object,
· ask the channel to allocate a new buffer for the return values and out values,
· marshal the return values and out values into the buffer, then
· return successfully (i.e.: NOERROR) from Invoke().

Errors may of course occur at various places in this process.13 Such errors will cause the stub to return an
error from Invoke() rather than NOERROR. In cases where such an error code is returned, it is the stub’s
responsibility to have cleaned up any data and other resources allocated by the unmarshaling and
marshaling processes or returned as out values from the server object. However, the stub is not
responsible for invoking FreeBuffer() to free the actual marshaling buffer (i.e.: it is illegal for the stub to do
so); rather, on error return from Invoke() the caller of Invoke() will ignore pvBuffer, and will also free it if
non-NULL. Having made that general statement as to the exit conditions of Invoke(), let us examine its
operation in greater detail.
If the stub cannot deal with the indicated dataRepresentation, it is to return RPC_E_SERVER_INVALIDDATA-
REP. If it understands the data representation, the stub is to then unmarshal the arguments from the buffer
provided in pMessage->pvBuffer, the size of which is passed in pMessage->cbBuffer. If the argument data
cannot be completely unmarshaled, the server is to free any partially unmarshaled data, then return
RPC_E_SERVER_CANTUNMARSHALDATA from Invoke().
If the data is successfully completely unmarshaled, then the interface stub is to invoke the designated
method in the designated interface on the server object. Notice that the incoming pvBuffer memory buffer
is at this time still valid, and that therefore the stub may if it wishes and if appropriate for the argument
and data representations in question pass to the server object pointers which point directly into this
buffer. The memory allocation and data copying that is thus avoided can at times be a significant
performance optimization.
Once the invocation of the server object returns, the stub is to marshal the return value and out
parameters returned from the server back to the client. It does so irrespective of whether the server object
invocation returned an error or success code; that is, the stub marshals back to the client whatever the
server object returned.14 The stub gets a reply buffer into which to do this marshaling by calling pChannel-
>GetBuffer(), passing in the pMessage structure that it received in Invoke(). Before calling GetBuffer(), the stub
is to set the cbBuffer member to the size that it requires for the to-be-allocated reply buffer. Zero is
explicitly a legal value for cbBuffer, and the stub must always call GetBuffer() (more precisely, to be clear
about the error case: the stub must always call GetBuffer() if the server object method has actually been
invoked)15 to allocate a reply buffer, even if the stub itself does not require one (such as would be the
case if for a void-returning function with no out parameters). The stub must also set dataRepresentation as
appropriate for the standard by which it intends to marshal the returning values (or would marshal them if
there were some).16 Aside from cbBuffer, dataRepresentation and possibly the contents of the bytes inside the
memory buffer, on entry to GetBuffer() no other data accessible from pMessage may be different than they
were on entry to Invoke().
Before it allocates a reply buffer, the call to GetBuffer() has the side effect of freeing the memory buffer to
which pvBuffer presently points. Thus, the act by the interface stub of allocating a reply buffer for the
return values necessarily terminates access by the stub to the incoming marshaled arguments.
If GetBuffer() successfully allocates a reply buffer (see GetBuffer() for a description of how the stub deter-
mines this), then the stub is to marshal the return value and returned out parameters into the buffer
according to the rules of the transfer syntax. Once this is complete, the stub is to set the cbBuffer member
to the number of bytes it actually marshaled (if it marshaled nothing, then it must explicitly set this to
zero (but see also GetBuffer())), and then return NOERROR from Invoke().

13 Be careful with the terminology here: we are not talking at all about what values are returned from the invocation of the server
object, but rather only about errors that occur in the unmarshaling and marshaling process itself.

14 However, debugging versions of the stub may if they wish to at this time check that certain details of the contract of the interface
have been upheld. A common example of this is checking that on error return from the server allocated out-values are explicitly
NULLed, a policy which is common to many interfaces. This is simply in the interest of improving the debug capabilities. It is illegal,
however, to do such things in non-debug versions of stubs; they must always simply marshal back whatever the server returned.

15 This policy exists in order to enable behind-the-scenes things such as debugging support to function in all cases.
16 Presently, this is only significant if NDR transfer syntax is in use. In NDR, it is explicitly the case that the return values may be

marshaled using a different data representation than was used for the incoming arguments.

Copyright © 1995 Microsoft Corporation Page: 16 DRAFT
All Rights Reserved

The COM Specification Chapter 7. Interface Remoting

If an error occurs during the unmarshaling of the incoming arguments or the marshaling of the return
values, then the interface stub is responsible for correctly freeing any resources consumed by the
marshaled data. See in particular CoReleaseMarshalData(). See also the discussion of this topic in
IRpcChannelBuffer::SendRecieve().
Argument Type Description
pMessage RPCOLEMESSAGE * channel-allocated message structure.
pChannel IRpcChannelBuffer * the channel to use for buffer management, etc.
return value HRESULT S_OK, RPC_E_SERVER_INVALIDDATAREP, RPC_E_SERVER_-

CANTUNMARSHALDATA, RPC_E_SERVER_CANTMARSHALDATA

IRpcStubBuffer::IsIIDSupported
IRpcStubBuffer* IRpcStubBuffer::IsIIDSupported(iid)
Answer whether this stub is designed to handle the unmarshaling of the indicated interface.
If the stub buffer supports the specified IID, then it should return an appropriate IRpcStubBuffer* for that
interface. Otherwise, the it should return NULL.
When presented with the need to remote a new IID on a given object, the RPC runtime typically calls this
function on all the presently-connected interface stubs in an attempt to locate one that can handle the
marshaling for the request before it goes to the trouble of creating a new stub.
As in IPSFactoryBuffer::CreateStub(), if this stub is presently connected to a server object, then not only must
this function verify that the stub can handle the requested interface id, but it must also verify (using
QueryInterface()) that the connected server object in fact supports the indicated interface (depending on the
IID and previous interface servicing requests, it may have already done so).
A common special case is the following: interface stubs which are designed to only support one interface
id (as most are designed to do) can simply check if iid designates the one interface that they handle. If not,
return false. Otherwise, then if connected check that the server object supports the interface. Otherwise
return true.
Argument Type Description
iid REFIID the interface that the caller wishes to know if the stub can handle. iid is

never to be IID_IUnknown.
return value IRpcStubBuffer* see above.

IRpcStubBuffer::CountRefs
ULONG IRpcStub::CountRefs()
Return the total number of references that this stub interface instance has on the server object.
Argument Type Description
return value ULONG the number of such references.

IRpcStubBuffer::DebugServerQueryInterface
HRESULT IRpcStubBuffer::DebugServerQueryInterface(ppv)
This function exists in order to facilitate the support of debuggers which wish to provide transparency
when single-stepping, etc., across remote invocations on objects. As such, the semantics of this function
are a little strange in order to avoid the unnecessarily disturbing the state of the actual server object.
If the stub is not presently connected then set *ppv to NULL (per the usual error-case convention) and
return E_UNEXPECTED. If connected but this stub does not support the indicated interface (in the sense
expressed in IsIIDSupported()), then (set *ppv to NULL and) return E_NOINTERFACE instead.
Otherwise, return the interface pointer on the connected server object which would be used by an
immediate subsequent invocation of Invoke() on this interface stub (see the discussion on page 7 regarding
how interface stubs implicitly know the IID which they are servicing). DebugServerQueryInterface() is anal-
ogous to invoking QueryInterface() on the server itself with the important difference that the caller will later

DRAFT Page: 17 Copyright © 1995 Microsoft Corporation
 All Rights Reserved

Chapter 7. Interface Remoting The COM Specification

call DebugServerRelease() to indicate that he is done with the pointer instead of releasing the returned
pointer himself. It is required that DebugServerRelease() be called before the interface stub itself is
destroyed or, in fact, before it is disconnected.
In the vast majority of interface stub implementations, DebugServerQueryInterface() can therefore be imple-
mented simply by returning an internal state variable inside the interface stub itself without doing an
AddRef() on the server or otherwise running any code in the actual server object. In such implementations,
DebugServerRelease() will be a completely empty no-op. The other rational implementation is one where
DebugServerQueryInterface() does a QueryInterface() on the server object and DebugServerRelease() does a
corresponding Release(), but as this actually runs server code, the former implementation is highly
preferred if at all achievable.
Argument Type Description
ppv void** the place at which the interface pointer is to be returned.
return value HRESULT S_OK, E_NOINTERFACE, E_UNEXPECTED

IRpcStubBuffer::DebugServerRelease
void IRpcStubBuffer::DebugServerRelease(pv)
Indicate that an interface pointer returned previously from DebugServerQueryInterface() is no longer needed
by the caller. In most implementations, DebugServerRelease() is a completely empty no-op; see the
description of DebugServerQueryInterface() for details.

1.8Marshaling - Related API Functions
The following functions are related to the process of remoting interface pointers and to marshaling in
general.

HRESULT CoMarshalInterface(pstm, riid, pUnk, dwDestContext, pvDestContext, mshlflags);
HRESULT CoUnmarshalInterface(pstm, iid, ppv);
HRESULT CoDisconnectObject(pUnkInterface, dwReserved);
HRESULT CoReleaseMarshalData(pstm);
HRESULT CoGetStandardMarshal(iid, pUnkObject, dwDestContext, pvDestContext, mshlflags, ppmarshal);

typedef enum tagMSHLFLAGS {
MSHLFLAGS_NORMAL = 0,
MSHLFLAGS_TABLESTRONG = 1,
MSHLFLAGS_TABLEWEAK = 2,
} MSHLFLAGS;

CoMarshalInterface
HRESULT CoMarshalInterface(pstm, riid, pUnk, dwDestContext, pvDestContext, mshlflags)
Marshal the interface riid on the object on which pUnk is an IUnknown* into the given stream in such a way
as it can be reconstituted in the destination using CoUnmarshalInterface().17 This the root level function by
which an interface pointer can be marshaled into a stream. It carries out the test for custom marshaling,
using it if present, and carries out standard marshaling if not. This function is normally only called by
code in interface proxies or interface stubs that wish to marshal an interface pointer parameter, though it
will sometimes also be called by objects which support custom marshaling.
riid indicates the interface on the object which is to be marshaled. It is specifically not the case that pUnk
need actually be of interface riid; this function will QueryInterface from pUnk to determine the actual
interface pointer to be marshaled.
dwDestContext is a bit field which identifies the execution context relative to the current context in which
the unmarshaling will be done. Different marshaling might be done, for example, depending on whether
the unmarshal happens on the same workstation vs. on a different workstation on the network; an object
could choose to do custom marshaling in one case but not the other. The legal values for dwDestContext are
taken from the enumeration MSHCTX, which presently contains the following values.

17 That is, the mechanism for unmarshaling a marshaled interface pointer is the same irrespective of whether the marshaling was done
using custom or standard marshaling.

Copyright © 1995 Microsoft Corporation Page: 18 DRAFT
All Rights Reserved

The COM Specification Chapter 7. Interface Remoting

typedef enum tagMSHCTX {
MSHCTX_NOSHAREDMEM = 1,
MSHCTX_DIFFERENTMACHINE = 2,
MSHCTX_SAMEPROCESS = 4,
} MSHCTX;

These flags have the following meanings.
Value Description
MSHCTX_NOSHAREDMEM The unmarshaling context does not have shared memory access with the

marshaling context.
MSHCTX_DIFFERENTMACHINE If this flag is set, then it cannot be assumed that this marshaling is being

carried out to the same machine as that on which the marshaling is being
done. The unmarshaling context is (very probably) on a computer with a
different set of installed applications / components than the marshaling
context (i.e.: is on a different computer). This is significant in that the
marshaling cannot in this case assume that it knows whether a certain
piece of application code is installed remotely.

MSHCTX_SAMEPROCESS The interface is being marshaled to another apartment within the same
process in which it is being unmarshaled.

In the future, more MSHCTX flags may be defined; recall that this is a bit field.
pvDestContext is a parameter that optionally supplies additional information about the destination of the
marshaling. If non-NULL, then it is a pointer to a structure of the following form.

typedef struct MSHCTXDATA {
ULONG cbStruct;
IRpcChannelBuffer* pChannel;
} MSHCTXDATA;

The members in this structure have the following meanings:
Value Description
cbStruct The size of the MSHCTXDATA structure in bytes.
pChannel The channel object involved in the marshaling process.

pvDestContext may legally be NULL, in which case such data is not provided.

mslflags indicates the purpose for which the marshal is taking place, as was discussed in an earlier part of
this document. Values for this parameter are taken from the enumeration MSHLFLAGS, and have the
following interpretation.

DRAFT Page: 19 Copyright © 1995 Microsoft Corporation
 All Rights Reserved

Chapter 7. Interface Remoting The COM Specification

Value Description
MSHLFLAGS_NORMAL The marshaling is occurring because of the normal case of passing an

interface from one process to another. The marshaled-data-packet that
results from the call will be transported to the other process, where it will
be unmarshaled (see CoUnmarshalInterface).
With this flag, the marshaled data packet will be unmarshaled either one
or zero times. CoReleaseMarshalData is always (eventually) called to free
the data packet.

MSHLFLAGS_TABLESTRONG The marshaling is occurring because the data-packet is to be stored in a
globally-accessible table from which it is to be unmarshaled zero, one, or
more times. Further, the presence of the data-packet in the table is to
count as a reference on the marshaled interface.
When removed from the table, it is the responsibility of the table
implementor to call CoReleaseMarshalData on the data-packet.

MSHLFLAGS_TABLEWEAK The marshaling is occurring because the data-packet is to be stored in a
globally-accessible table from which it is to be unmarshaled zero, one, or
more times. However, the presence of the data-packet in the table is not
to count as a reference on the marshaled interface.
Destruction of the data-packet is as in the MSHLFLAGS_TABLESTRONG
case.

A consequence of this design is that the marshaled data packet will want to store the value of mshlflags in
the marshaled data so as to be able to do the right thing at unmarshal time.
Argument Type Description
pstm IStream * the stream onto which the object should be marshaled. The stream

passed to this function must be dynamically growable.
riid REFIID the interface that we wish to marshal.
pUnk IUnknown * the object on which we wish to marshal the interface riid.
dwDestContext DWORD the destination context in which the unmarshaling will occur.
pvDestContext void* as described above.
mshlflags DWORD the reason that the marshaling is taking place.
return value HRESULT S_OK, STG_E_MEDIUMFULL, E_NOINTERFACE, E_FAIL

CoUnmarshalInterface
HRESULT CoUnmarshalInterface(pstm, iid, ppv)
Unmarshal from the given stream an object previously marshaled with CoMarshalInterface.
Argument Type Description
pstm IStream * the stream from which the object should be unmarshaled.
iid REFIID the interface with which we wish to talk to the reconstituted object.
ppv void ** the place in which we should return the interface pointer.
return value HRESULT S_OK, E_FAIL, E_NOINTERFACE

CoDisconnectObject
HRESULT CoDisconnectObject(pUnkInterface, dwReserved)
This function severs any extant Remote Procedure Call connections that are being maintained on behalf
of all the interface pointers on this object. This is a very rude operation, and is not to be used in the nor -
mal course of processing; clients of interfaces should use IUnknown::Release() instead. In effect, this
function is a privileged operation, which should only be invoked by the process in which the object
actually is managed.

Copyright © 1995 Microsoft Corporation Page: 20 DRAFT
All Rights Reserved

The COM Specification Chapter 7. Interface Remoting

The primary purpose of this operation is to give an application process certain and definite control over
remoting connections to other processes that may have been made from objects managed by the process.
If the application process wishes to exit, then we do not want it to be the case that the extant reference
counts from clients of the application’s objects in fact keeps the process alive. When the application
process wishes to exit, it should inform the extant clients of its objects 18 that the objects are going away.
Having so informed its clients, the process can then call this function for each of the object that it
manages, even without waiting for a confirmation from each client. Having thus released resources
maintained by the remoting connections, the application process can exit safely and cleanly. In effect,
CoDisconnectObject() causes a controlled crash of the remoting connections to the object. It is also (one of)
the triggers by which a client’s subsequent IRpcChannel::IsConnected() call may return false.
For illustration, contrast this with the situation with Microsoft’s elderly Dynamic Data Exchange (DDE)
desktop application integration protocol. If it has extant DDE connections, an applica tion is required to
send a DDE Terminate message before exiting, and it is also responsible for waiting around for an
acknowledgment from each client before it can actually exit. Thus, if the client process has crashed, the
application process will wait around forever. Because of this, with DDE there simply is no way for an
application process to reliably and robustly terminate itself. Using CoDisconnectObject(), we avoid this sort
of situation.
Argument Type Description
punkInterface IUnknown * the object that we wish to disconnect. May be any interface on the

object which is polymorphic with IUnknown*, not necessarily the exact
interface returned by QueryInterface(IID_IUnknown...).

dwReserved DWORD reserved for future use; must be zero.
return value HRESULT S_OK, E_FAIL

CoReleaseMarshalData
HRESULT CoReleaseMarshalData(pstm)
This helper function destroys a previously marshaled data packet. This function must always be called in
order to destroy data packets. Examples of when this occurs include:

1. an internal error during an RPC invocation prevented the UnmarshalInterface() operation from
being attempted.

2. a marshaled-data-packet was removed from a global table.
3. following a successful, normal, unmarshal call.

This function works as should be expected: the class id is obtained from the stream; an instance is
created; IMarshal is obtained from that instance; then IMarshal::ReleaseMarshalData() is invoked.
Note for clarity: CoReleaseMarshalData() is not to be called following a normal, successful CoUnmarshalInter-
face(), as the latter function does this automatically for MSHLFLAGS_NORMAL. However, clients that use
IMarshal interface directly, rather than simply going through the functions CoMarshal/UnmarshalInterface(),
etc., must of course themselves always call IMarshal::ReleaseMarshalData() after calling IMarshal::Unmarshal-
Interface().
Argument Type Description
pstm IStream* a pointer to a stream that contains the data packet which is to be

destroyed.
return value HRESULT S_OK, E_FAIL

CoGetStandardMarshal
HRESULT CoGetStandardMarshal(iid, pUnkObject, dwDestContext, pvDestContext, mshlflags, ppmarshal)
Return an IMarshal instance that knows how to do the standard marshaling and unmarshaling in order to
create a proxy in the indicated destination context. Custom marshaling implementations should delegate
to the marshaler here returned for destination contexts that they do not fully understand or for which they
18 using a higher-level notification scheme appropriate for the semantics of the particular connection. An example of this is

OLE 2.0 is broadcasting IAdviseSink::OnClose() to connected links.

DRAFT Page: 21 Copyright © 1995 Microsoft Corporation
 All Rights Reserved

Chapter 7. Interface Remoting The COM Specification

choose not to take special action. The standard marshaler is also used in the case that the object being
marshaled does not support custom marshaling.
Argument Type Description
iid REFIID the interface id we would like to marshal.
pUnkObject IUnknown* the object that we wish to marshal. It is specifically not the case that

this interface is known to be of shape iid; rather, it can be any
interface on the object which conforms to IUnknown. The standard
marshaler will internally do a QueryInterface().

dwDestContext DWORD the destination context in which the unmarshaling will occur.
pvDestContext void * associated with the destination context.
mshlflags DWORD the marshal flags for the marshaling operation.
ppmarshal IMarshal ** the place at which the standard marshaler should be returned.
return value HRESULT S_OK, E_FAIL

CoGetMarshalSizeMax
HRESULT CoGetMarshalSizeMax(riid, pUnk, dwDestContext, pvDestContext, mshlfags, pulSize)
Return the number of bytes needed to marshal the given interface on the given object. On successful exit,
the value pointed to by *pulSize will have been incremented by the number of bytes required.
This function is useful to custom marshaling implementations which themselves internally marshal inter -
face pointers as part of their state.
Argument Type Description
riid REFIID the interface on the object which is to be marshaled.
pUnk IUnknown* an IUnknown (any old one) on the object.
dwDestContext DWORD the context into which the object is to be marshaled.
pvDestContext void * the context into which the object is to be marshaled.
mshlflags DWORD the marshal flags for the marshaling operation
pulSize ULONG * the place at which the required size is to be returned.
return value HRESULT S_OK, E_NOINTERFACE, E_OUTOFMEMORY, E_UNEXPECTED

1.9IMarshal interface
IMarshal interface is the mechanism by which an object is custom-marshaled. IMarshal is defined as
follows:

interface IMarshal : IUnknown {
HRESULT GetUnmarshalClass(iid, pvInterface, dwDestContext, pvDestContext, mshlflags, pclsid);
HRESULT GetMarshalSizeMax(iid, pvInterface, dwDestContext, pvDestContext, mshlflags, pcb);
HRESULT MarshalInterface(pstm, iid, pvInterface, dwDestContext, pvDestContext, mshlflags);
HRESULT UnmarshalInterface(pstm, iid, ppvInterface);
HRESULT DisconnectObject(dwReserved);
HRESULT ReleaseMarshalData(pstm);
};

The process of custom marshaling an interface pointer involves two steps, with an optional third:
1. The code doing the marshaling calls IMarshal::GetUnmarshalClass(). This returns the class id

that will be used to create an uninitialized proxy object in the unmarshaling context.
2. (optional) The marshaler calls IMarshal::GetMarshalSizeMax() to learn an upper bound on the

amount of memory that will be required by the object to do the marshaling.
3. The marshaler calls IMarshal::MarshalInterface() to carry out the marshaling.

Copyright © 1995 Microsoft Corporation Page: 22 DRAFT
All Rights Reserved

The COM Specification Chapter 7. Interface Remoting

The class id and the bits that were marshaled into the stream are then conveyed by appropriate means to
the destination, where they are unmarshaled. Unmarshaling involves the following essential steps:

1. Load the class object that corresponds to the class that the server said to use in GetUnmarshal-
Class().

IClassFactory * pcf;
CoGetClassObject(clsid, CLSCTX_INPROCSERVER, IID_IClassFactory, &pcf);

2. Instantiate the class, asking for IMarshal interface:
IMarshal * proxy;
pcf->CreateInstance(NULL, IID_IMarshal, &proxy);

3. Initialize the proxy with IMarshal::UnmarshalInterface() using a copy of the bits that were
originally produced by IMarshal::MarshalInterface() and asking for the interface that was
originally marshaled.

IOriginal * pobj;
proxy->UnmarshalInterface(pstm, IID_Original, &pboj);
proxy->Release();
pcf->Release();

The object proxy is now ready for use.

IMarshal::GetUnmarshalClass
HRESULT IMarshal::GetUnmarshalClass(iid, pvInterface, dwDestContext, pvDestContext, mshlflags, pclsid)
Answer the class that should be used in the unmarshaling process to create an uninitialized object proxy.
dwDestContext is described in the API function CoMarshalInterface. The implementation of GetUnmarshalClass
may wish for some destination contexts for which it takes no special action to delegate to the standard
marshaling implementation, which is available through CoGetStandardMarshal. In addition, this delegation
should always be done if the dwDestContext parameter contains any flags that the GetUnmarshalClass does
not fully understand; it is by this means that we can extend the richness of destination contexts in the
future. For example, in the future, one of these bits will likely be defined to indicate that the destination
of the marshaling is across the network.
If the caller already has in hand the iid interface identified as being marshaled, he should pass the inter-
face pointer through pvInterface. If he does not have this interface already, then he should pass NULL. This
pointer can sometimes, though rarely, be used in order to determine the appropriate unmarshal class. If
the IMarshal implementation really needs it, in can always QueryInterface on itself to retrieve the interface
pointer; we optionally pass it here only to improve efficiency.
Argument Type Description
iid REFIID the interface on this object that we are going to marshal.
pvInterface void * the actual pointer that will be marshaled. May be NULL.
dwDestContext DWORD the destination context relative to the current context in which the

unmarshaling will be done.
pvDestContext void* non-NULL for some dwDestContext values.
mshlflags DWORD as in CoMarshalInterface().

pclsid CLSID * the class to be used in the unmarshaling process.
return value HRESULT S_OK, E_FAIL, E_NOINTERFACE, E_UNEXPECTED

IMarshal::MarshalInterface
HRESULT IMarshal::MarshalInterface(pstm, iid, pvInterface, dwDestContext, pvDestContext,

mshlflags)
Marshal a reference to the interface iid of this object into the given stream. The interface actually
marshaled is the one that would be returned by this->QueryInterface(iid, ...). Once the contents of this stream
are conveyed to the destination by whatever means, the interface reference can be reconstituted by instan-
tiating with IMarshal interface the class here retrievable with GetUnmarshalClass and then calling

DRAFT Page: 23 Copyright © 1995 Microsoft Corporation
 All Rights Reserved

Chapter 7. Interface Remoting The COM Specification

IMarshal::UnmarshalInterface. The implementation of IMarshal::MarshalInterface writes in the stream any data
required for initialization of this proxy.
If the caller already has in hand the iid interface identified as being marshaled, he should pass the inter -
face pointer through pvInterface. If he does not have this interface already, then he should pass NULL; the
IMarshal implementation will QueryInterface on itself to retrieve the interface pointer.
On exit from this function, the seek pointer in the stream must be positioned immediately after the last
byte of data written to the stream.
Argument Type Description
pstm IStream * the stream onto which the object should be marshaled.
iid REFIID the interface of this object that we wish to marshal.
pvInterface void * the actual pointer that will be marshaled. May be NULL.
dwDestContext DWORD as in CoMarshalInterface().
pvDestContext void * as in CoMarshalInterface().
mshlflags DWORD as in CoMarshalInterface().
return value HRESULT S_OK, E_FAIL, E_NOINTERFACE, STG_E_MEDIUMFULL, E_UNEXPECTED

IMarshal::GetMarshalSizeMax
HRESULT IMarshal::GetMarshalSizeMax(iid, pvInterface, dwDestContext, pvDestContext, mshlflags, pcb)
Return an upper bound on the amount of data that would be written into the marshaling stream in an
IMarshal::MarshalInterface() stream. The value returned must be an upper bound in the sense that it must be
the case that a subsequent call to MarshalInterface() in fact require no more than the indicated number of
bytes of marshaled data.
Callers can optionally use the returned upper bound to pre-allocate stream buffers used in the marshaling
process. Note that when IMarshal::MarshalInterface() is ultimately called, the IMarshal implementation cannot
rely on the caller actually having called GetMarshalSizeMax() beforehand; it must still be wary of
STG_E_MEDIUMFULL errors returned by the stream.
The value returned by this function is guaranteed by the callee to be a conservative estimate of the
amount of data needed to marshal the object; it is valid so long as the object instance is alive. Violation
of this can be treated as a catastrophic error. To repeat for emphasis: an object must return a reasonable
maximum size needed for marshaling: callers have the option of allocating a fixed-size marshaling
buffer.
Argument Type Description
iid REFIID the interface of this object that we wish to marshal.
pvInterface void * the actual pointer that will be marshaled. May be NULL.
dwDestContext DWORD as in CoMarshalInterface().
pvDestContext void * as in CoMarshalInterface().
mshlflags DWORD as in CoMarshalInterface().
pcb ULONG * the place at which the maximum marshal size should be returned. A

return of zero indicates “unknown maximum size.”
return value HRESULT S_OK, E_FAIL, E_NOINTERFACE, E_UNEXPECTED

IMarshal::UnmarshalInterface
HRESULT IMarshal::UnmarshalInterface(pstm, iid, ppvInterface)
This is called as part of the unmarshaling process in order to initialize a newly created proxy; see the
above sketch of the unmarshaling process for more details.
iid indicates the interface that the caller in fact would like to retrieve from this object; this interface
instance is returned through ppvInterface. In order to support this, UnmarshalInterface will often merely do a
QueryInterface(iid, ppvInterface) on itself immediately before returning, though it is free to create a different
object (an object with a different identity) if it wishes.

Copyright © 1995 Microsoft Corporation Page: 24 DRAFT
All Rights Reserved

The COM Specification Chapter 7. Interface Remoting

On successful exit from this function, the seek pointer must be positioned immediately after the data read
from the stream. On error exit, the seek pointer should still be in this location: even in the face of an
error, the stream should be positioned as if the unmarshal were successful.
See also CoReleaseMarshalData.
Argument Type Description
pstm IStream * the stream from which the interface should be unmarshaled.
iid REFIID the interface that the caller ultimately wants from the object.
ppvInterface void ** the place at which the interface the caller wants is to be returned.
return value HRESULT S_OK, E_FAIL, E_NOINTERFACE, E_UNEXPECTED

IMarshal::Disconnect
HRESULT IMarshal::DisconnectObject(dwReserved)
This function is called by the implementation of CoDisconnectObject in the event that the object attempting
to be disconnected in fact supports custom marshaling. This is completely analogous to how
CoMarshalInterface defers to IMarshal::MarshalInterface in if the object supports IMarshal.
Argument Type Description
dwReserved DWORD as in CoDisconnectObject().
return value HRESULT as in CoDisconnectObject().

IMarshal::ReleaseMarshalData
HRESULT IMarshal::ReleaseMarshalData(pstm)
This function is called by CoReleaseMarshalData() in order to actually carry out the destruction of a
marshaled-data-packet. See that function for more details.
Note that whereas the IMarshal methods

GetUmarshalClass
GetMarshalSizeMax
MarshalInterface
Disconnect

are always called on the IMarshal interface instance in the originating side (server side), the method
UnmarshalInterface

is called on the receiving (client) side. (This should be no surprise.) However, the function
ReleaseMarshalData

(when needed) will be called on the receiving (client) side if the appropriate IMarshal instance can be
successfully created there; otherwise, it is invoked on the originating (server) side.
Argument Type Description
pstm IStream* as in CoReleaseMarshalData().
return value HRESULT as in CoReleaseMarshalData().

1.10IStdMarshalInfo interface
IStdMarshalInfo is implemented by objects wishing to support handler marshaling in their remote client
process. This is common, for example, for OLE 2 compound document embedded objects which for
example support client-side drawing related interfaces using the IViewObject interface, an interface which
is not (usually) supported on the actual embedding itself.

interface IStdMarshalInfo : IUnknown {
HRESULT GetClassForHandler(DWORD dwDestContext, void* pvDestContext, CLISD* pclsid);
};

DRAFT Page: 25 Copyright © 1995 Microsoft Corporation
 All Rights Reserved

Chapter 7. Interface Remoting The COM Specification

IStdMarshalInfo::GetClassForHandler
HRESULT IStdMarshalInfo::GetClassForHandler(dwDestContext, dwDestContext, pclsid)
Return the CLSID whose handler is to be used in the remote client process.
Argument Type Description
dwDestContext DWORD As in CoMarshalInterface.
pvDestContext void* As in CoMarshalInterface.
pclsid CLSID* The place at which the requested CLSID is returned.
Return Value Meaning
S_OK Success. The required CLSID is returned.
E_UNEXPECTED An unspecified error occurred.

1.11 Support for Remote Debugging
The COM Library and the COM Network Protocol provide support for debugging engines on the client
and the server side of a remote COM invocation to cooperate in allowing the overall application to be
debugged. This section describes the runtime infrastructure provided by the Microsoft Windows
implementation of the COM Library by which that is accomplished; other implementations will provide
similar infrastructures, though in practice the details of such support will be highly sensitive to the
mechanisms by which debugging engines are supported on the given platform. This section also specifies
the standard data formats transmitted between client and server by which this cooperation is carried out.
The following a brief example of the sort of debugging session scenario which can be supported with this
infrastructure.
Suppose the programmer is debugging an application with is an OLE document container, and that the
application is presently stopped in the debugger at a point in the code where the container is about to
invoke a method in some interface on one of its contained objects, the implementation of which happens
to be in another executable. That is, the pointer that the container has in hand actually points to an
occurrence of part of the remoting infrastructure known as an “interface proxy” (see above). Interface
proxies and the rest of the remoting infrastructure are not (normally) part of the programmer’s concern
when debugging client and server applications, as the whole raison d’être of the RPC infrastructure is to
be transparent, is to make remote object invocations appear to be local ones. Unless the programmer is
debugging the remoting infrastructure himself, this should apply to debugging as well.
This perspective leads to some of the following scenarios that need to be supportable by the debugger. If
the programmer Single Steps into the function invocation, then the debugger should next stop just inside
the real implementation of the remote server object, having transparently passed through the RPC
infrastructure. (Notice that before the Step command is executed, the remote process may not presently
have the debugger19 attached to it, and so the act of doing the step may need to cause the debugger to
attach itself.) The programmer will now be able to step line by line through the server's function. When
he steps past the closing brace of the function, he should wind up back in the debugger of the client
process immediately after the function call.
A similar scenario is one where we skip the incoming single step but instead, out of the blue, hit a break -
point in the server, then start single stepping. This, too, should single step over the end of the server
function back into the client process. The twist is that this time, the client debugger may not presently be
running, and therefore may need to be started.

1.11.1Implementation
The ability for debuggers to support scenarios such as these is provided by hooks in the client and server
side RPC infrastructure. If requested by the debugger, at certain important times, these hooks inform the
debugger of the fact that a transmission of a remote call about to be made or that transmission of return
values is about to occur. That is, when the COM Library is about to make or return from a call to an
19 More precisely, it may not have a debugger attached to it: depending on the debugger’s implementation and the relative location of

the two processes with respect to machine boundaries, a new debugger instance may or may not need to be created. The main point
is that the process wasn’t being debugged.

Copyright © 1995 Microsoft Corporation Page: 26 DRAFT
All Rights Reserved

The COM Specification Chapter 7. Interface Remoting

object, it notifies the debugger of what is happening, so that the debugger can take any special actions it
desires.

DllDebugObjectRPCHook
BOOL WINAPI DllDebugObjectRPCHook(BOOL fTrace, LPORPC_INIT_ARGS lpOrpcInitArgs)
This function is to be exported by name from one or more DLLs that wish to be informed when from the
user’s point of view that debugging is engaged. Debuggers will should call this function to inform each of
their loaded DLLs that export this function as to whether they are presently being debugged or not. When
the debugger wants to enable debugging, it calls DllDebugObjectRpcHook with fTrace=TRUE and when it
wants to disable it, it calls DllDebugObjectRpcHook with fTrace=FALSE. When enabled, debugging support
such as the tracing described herein should be enabled.
Certain of the COM Library DLLs, for example, implement this function. When debugging is enabled,
they turn on what is here called COM remote debugging, and which is the focus of this section.
The second argument points to an ORPC_INIT_ARGS structure whose definition is given below. The pvPSN
member is used only on the Macintosh, where the calling debugger is required in this field to pass the
process serial number of the debuggee’s process. On other systems pvPSN should be NULL.
The lpIntfOrpcDebug member is a pointer to an interface. This is used by in-process debuggers and is
discussed in more detail later. Debuggers that are neither in-process debuggers nor are Macintosh
debuggers should pass NULL for lpIntfOrpcDebug.

typedef struct ORPC_INIT_ARGS {
IOrpcDebugNotify __RPC_FAR * lpIntfOrpcDebug;
void * pvPSN; // contains ptr to Process Serial No. for Mac COM debugging.
DWORD dwReserved1; // For future use, must be 0.
DWORD dwReserved2; // For future use, must be 0.
} ORPC_INIT_ARGS;

typedef ORPC_INIT_ARGS __RPC_FAR * LPORPC_INIT_ARGS;

interface IOrpcDebugNotify : IUnknown {
VOID ClientGetBufferSize(LPORPC_DBG_ALL);
VOID ClientFillBuffer(LPORPC_DBG_ALL);
VOID ClientNotify(LPORPC_DBG_ALL);
VOID ServerNotify(LPORPC_DBG_ALL);
VOID ServerGetBufferSize(LPORPC_DBG_ALL);
VOID ServerFillBuffer(LPORPC_DBG_ALL);
};

As one would expect, a debugger calls DllDebugObjectRPCHook within the context (that is, within the
process) of the relevant debuggee. Thus, the implementation of this function most often will merely store
the arguments in global DLL-specific state.
Further, as this function is called from the debugger, the function can be called when the DLL in which it
is implemented is in pretty well any state; no synchronization with other internal DLL state can be relied
upon. Thus, it is recommended that the implementation of this function indeed do nothing more than set
internal global variables.
Argument Type Description
fTrace BOOL TRUE if debugging is enabled, FALSE otherwise
lpOrpcInitArgs LPORPC_INIT_ARGS typically NULL; see comments above for MAC COM

debuggers or in-process debuggers.
return value BOOL TRUE if the function was successful (the DLL understood and

executed the request), FALSE otherwise

1.11.2Architectural Overview
When COM remote debugging is enabled, there are a total of six notifications that occur in the round-trip
of one COM RPC call: three on the client side and three on the server side. The overall sequence of
events is as follows.

DRAFT Page: 27 Copyright © 1995 Microsoft Corporation
 All Rights Reserved

Chapter 7. Interface Remoting The COM Specification

Suppose the client has an interface pointer pFoo of type IFoo* which happens to be a proxy for another
object in a remote server process.

interface IFoo : IUnknown {
HRESULT Func();
};

IFoo *pFoo;

When the client invokes pFoo->Func(), it executes code in the interface proxy. This code is responsible for
marshaling the arguments into a buffer, calling the server, and unmarshaling the return values. To do so,
it draws on the services of an IRpcChannelBuffer instance with which it was initialized by the COM Library.
To get the buffer, the interface proxy calls IRpcChannelBuffer::GetBuffer(), passing in (among other things)
the requested size for the buffer. Before actually allocating the buffer, the GetBuffer() implementation
(normally20) checks to see if debugging is enabled per DllDebugObjectRPCHook(). If so, then the channel
calls DebugORPCClientGetBufferSize() (see below for details) to inform the debugger that an COM RPC call
is about to take place and to ask the debugger how many bytes of information it would like to transmit to
the remote server debugger. The channel then, unbeknownst to the interface proxy, allocates a buffer
with this many additional bytes in it.
The interface proxy marshals the incoming arguments in the usual way into the buffer that it received,
then calls IRpcChannelBuffer::SendReceive(). Immediately on function entry, the channel again checks to see
if debugging is enabled. If so, then it calls DebugORPCClientFillBuffer() passing in the pointer to (the
debugger’s part of) the marshaling buffer. The debugger will write some information into the buffer, but
this need be of no concern to the channel implementation other than that it is to ferry the contents of the
buffer to the server debugger. Once DebugORPCClientFillBuffer() returns, the channel implementation of
SendReceive() proceeds as in the normal case.
We now switch context in our explanation here to the server-side RPC channel. Suppose that it has
received an incoming call request and has done what it normally does just up to the point where it is
about to call IRpcStubBuffer::Invoke(), which when will cause the arguments to be unmarshaled, etc. Just
before calling Invoke(), if there was any debugger information (i.e.: it exists in the incoming request and is
of non-zero size) in the incoming request or if debugging is presently already enabled per
DllDebugObjectRPCHook() (irrespective of the presence or size of the debug info), then the channel is to call
DebugORPCServerNotify().21 The act of calling this function may in fact start a new debugger if needed and
attach it to this (the server) process; however, this need not be of concern to the channel implementation.
Having made the request, the channel proceeds to call Invoke() as in the normal case.
The implementation of Invoke() will unmarshal the incoming arguments, then call the appropriate method
on the server object. When the server object returns, Invoke() marshals the return values for transmission
back to the client. As on the client side, the marshaling process begins by calling IRpcChannelBuffer::Get-
Buffer() to get a marshaling buffer. As on the client side, the server side channel GetBuffer() implementation
when being debugged (per the present setting of DllDebugObjectRPCHook(), not per the presence of the
incoming debug info) asks the debugger how many bytes it wishes to transmit back to the client
debugger. The channel allocates the buffer accordingly and returns it to the Invoke() implementation who
marshals the return values into it, then returns to its caller.
The caller of IRpcStubBuffer::Invoke() then checks to see if he is presently being debugged. If so, then he at
this time calls DebugORPCServerFillBuffer(), passing in the pointer to the debug-buffer that was allocated in
the (last, should there erroneously be more than one) call to GetBuffer() made inside Invoke(); should no
such call exist, and thus there is no such buffer, NULL is passed.22 The bytes written into the buffer (if any)
by the debugger are ferried to the client side.
We now switch our explanatory context back to the client side. Eventually the client channel either
receives a reply from the server containing the marshaled return values (and possibly debug info),
receives an error indication from the server RPC infrastructure, or decides to stop waiting. That is, even -

20 That is, in the channel implementation approach described here, which uses only one memory buffer. Another channel
implementation approach would use two separate buffers, one to give back to the interface proxy, and another independent one for
the debug information. Such an implementation would only need to call DebugORPCClientGetBufferSize() in its
IRpcChannellBuffer::SendReceive() implementation immediately before calling DebugORPCClientFillBuffer(). While perfectly legal, this will
not be elaborated further here, though in fact this is the implementation likely to be used in practice, given how the debug data is to
be transmitted in the COM Network Protocol. We trust that readers can accommodate our pedagogical style; apologies to those
who cannot.

21 Some control as to whether this is to be actually carried out is provided by the first four bytes of the incoming debug data;
see later in this specification.

22 This is important in error handling cases to allow us to ensure that breakpoints are always cleared correctly.

Copyright © 1995 Microsoft Corporation Page: 28 DRAFT
All Rights Reserved

The COM Specification Chapter 7. Interface Remoting

tually the client channel decides that it is about to return from IRpcChannel::SendReceive(). Immediately
before doing so, it checks to see if it is either already presently being debugged or if in the reply it
received any (non-zero sized) information from the server debugger. If so, then it calls
DebugORPCClientNotify(), passing in the server-debugger’s info if it has any; doing so may start and attach
the debugger if needed. The channel then returns from SendReceive().

1.11.3Calling Convention for Notifications
The preceding discussion discussed the COM RPC debugging architecture in terms of six of debugger-
notification APIs (DebugORPC...()). However, rather than being actual API-entry points in a a static-linked
or dynamically-linked library, these notifications use an somewhat unusual calling convention to
communicate with the notification implementations, which are found inside debugger products. This
somewhat strange calling convention is used for the following reasons:
· Two of the six notifications need to start and attach the debugger if it is not already attached to the

relevant process.
· The convention used transitions into the debugger code with the least possible disturbance of the

debuggee’s state and executing the minimal amount of debuggee code. This increases robustness
of debugging.

· The debugger is necessarily equipped to deal with concurrency issues of other threads executing in
the same process. Therefore, it is important to transition to the debugger as fast as possible to avoid
inadvertent concurrency problems.

The actual calling convention used is by its nature inherently processor and operating-system specific. On
Win32 implementations, the default calling convention for notifications takes the form of a software
exception, which is raised by a call to the RaiseException Win32 API:

VOID RaiseException(
DWORD dwExceptionCode, // exception code
DWORD dwExceptionFlags, // continuable exception flag
DWORD cArguments, // number of arguments in array
CONST DWORD * lpArguments // address of array of arguments
);

As used here, the arguments to this raised exception call in order are:
· dwExceptionCode: An exception code EXCEPTION_ORPC_DEBUG (0x804F4C45) is used. The debugger

should recognize this exception as a special one indicating an COM RPC debug notification.
· dwExceptionFlags: This is zero to indicate a continuable exception.
· cArguments: One
· lpArguments: The array contains one argument. This argument is a pointer to a structure which

contains the notification specific information that the COM RPC system passes to the debugger.
The definition of this structure ORPC_DBG_ALL is given below. The same structure is used for all
the notifications. The structure is just the union of the arguments of the six debugger notification
APIs. For a particular notification not all the fields in the structure are meaningful and those that
are not relevant have undefined values; details on this are below:

 typedef struct ORPC_DBG_ALL {
BYTE * pSignature;
RPCOLEMESSAGE * pMessage;
const IID * iid;
void* reserved1;
void* reserved2;
void* pInterface;
IUnknown * pUnkObject;
HRESULT hresult;
void * pvBuffer;
ULONG cbBuffer;
ULONG * lpcbBuffer;
void * reserved3;
} ORPC_DBG_ALL;

DRAFT Page: 29 Copyright © 1995 Microsoft Corporation
 All Rights Reserved

Chapter 7. Interface Remoting The COM Specification

The pSignature member of this structure points to a sequence of bytes which contains:
· a four-byte sanity-check signature of the ASCII characters “MARB” in increasing memory order.23

· a 16-byte GUID indicating which notification this is. Each of the six notifications defined here has a
different GUID. More notifications and corresponding GUIDs can be defined in the future and be
known not to collide with existing notifications.

· a four-byte value which is reserved for future use. This value is NULL currently.
The notifications specified here pass their arguments by filling in the appropriate structure members. See
each notification description for details.
Using software exceptions for COM debugging notifications is inconvenient for “in-process” debugging.
In-process debuggers can alternately get these notifications via direct calls into the debugger’s code. The
debugger which wants to be notified by a direct call passes in an IOrpcDebugNotify interface in the
LPORPC_INIT_ARGS argument to DllDebugObjectRPCHook. If this interface pointer is available, COM makes
the debug notifications by calling the methods on this interface. The methods all take an
LPORPC_DBG_ALL as the only argument. The information passed in this structure is identical to that
passed when the notification is done by raising a software exception.

1.11.4Notifications
What follows is a detailed description of each of the relevant notifications.
Note that in the network case, depending on the notification in question the byte order used may be
different than that of the local machine. The byte order, etc., of the incoming data is provided from the
dataRep contained the passed RPCOLEMESSAGE structure.
Though each function is documented here for purely historical reasons as if it were in fact a function call,
we have seen above that this is not the case. Unless otherwise specified, the name of the argument to the
DebugORPC... notification call is the same as the name of the structure member in ORPC_DBG_ALL used to
pass it to the debugger. So for example the pMessage argument of the DebugORPCClientGetBufferSize
notification is passed to the debugger in the pMessage structure member of ORPC_DBG_ALL. We trust that
readers will not be too confused by this, and apologize profusely should this prove not to be the case.

DebugORPCClientGetBufferSize
ULONG DebugORPCClientGetBufferSize(pMessage, iid, reserved, pUnkProxyObject)
Called on the client side in IRpcChannel::GetBuffer().
The GUID for this notification is 9ED14F80-9673-101A-B07B-00DD01113F11

GUID __private_to_macro__ = { /* 9ED14F80-9673-101A-B07B-00DD01113F11 */
 0x9ED14F80,
 0x9673,
 0x101A,
 0xB0,
 0x7B,
 {0x00, 0xDD, 0x1, 0x11, 0x3F, 0x11}
 };

23 “MARB” is “Mike Alex Rico Bob,” arranged in an order such that it makes a goofy-sounding syllable. Call us whimsical.

Copyright © 1995 Microsoft Corporation Page: 30 DRAFT
All Rights Reserved

The COM Specification Chapter 7. Interface Remoting

Argument Type Description
pMessage RPCOLEMESSAGE* identification of the method being invoked, etc.
iid REFIID contains the IID of the interface being called.
reserved void * reserved for future use.
pUnkProxyObject IUnknown * an IUnknown (no particular one) on the object involved in this

invocation. May legally be NULL, though this reduces
debugging functionality. Further, this and like-named
parameters must consistently be either NULL or non-NULL in
all notifications in a given client side COM RPC
implementation.

“return value” ULONG the number of bytes that the client debugger wishes to
transmit to the server debugger. May legitimately be zero,
which indicates that no information need be transmitted. The
lpcbBuffer field in the ORPC_DBG_ALL structure holds a pointer
to a ULONG. The debugger writes the number of bytes it
wants to transmit with the packet in that location.

DebugORPCClientFillBuffer
void DebugORPCClientFillBuffer(pMessage, iid, reserved, pUnkProxyObject, pvBuffer, cbBuffer)
Called on the client side on entry to IRpcChannel::SendReceive(). See the above overview for further details.
The GUID for this notification is DA45F3E0-9673-101A-B07B-00DD01113F11:

GUID __private_to_macro__ = { /* DA45F3E0-9673-101A-B07B-00DD01113F11 */
 0xDA45F3E0,
 0x9673,
 0x101A,
 0xB0,
 0x7B,
 {0x00, 0xDD, 0x01, 0x11, 0x3F, 0x11}
 };

Argument Type Description
pMessage RPCOLEMESSAGE* as in DebugORPCClientGetBufferSize().
iid REFIID as in DebugORPCClientGetBufferSize().
reserved void * as in DebugORPCClientGetBufferSize().
pUnkProxyObject IUnknown * as in DebugORPCClientGetBufferSize().
pvBuffer void * the debug-data buffer which is to be filled. Is undefined (may

or may not be NULL) if cbBuffer is zero.
cbBuffer ULONG the size of the data pointed to by pvBuffer.

DebugORPCServerNotify
void DebugORPCServerNotify(pMessage, iid, pChannel, pInterface, pUnkObject, pvBuffer, cbBuffer)
Called on the server side immediately before calling IRpcStubBuffer::Invoke() to inform it that there is an
incoming request. Will start the debugger in this process if need be. See the above overview for further
details.
The GUID for this notification is 1084FA00-9674-101A-B07B-00DD01113F11:

GUID __private_to_macro__ = { /* 1084FA00-9674-101A-B07B-00DD01113F11 */
 0x1084FA00,
 0x9674,
 0x101A,
 0xB0,
 0x7B,
 {0x00, 0xDD, 0x01, 0x11, 0x3F, 0x11}
 };

On entry, the members of pMessage are set as follows:

DRAFT Page: 31 Copyright © 1995 Microsoft Corporation
 All Rights Reserved

Chapter 7. Interface Remoting The COM Specification

Member Name Value on entry to Invoke()

reserved members indeterminate. These members are neither to be read nor to be changed by the
callee.

dataRepresentation this indicates the byte order, etc., of the client debugger
pvBuffer points to a buffer which contains the marshaled incoming arguments. In the

case that there are no such arguments (i.e.: cbBuffer == 0), pvBuffer may be NULL,
but will not necessarily be so.

cbBuffer the size in bytes of the memory buffer to which pvBuffer points. If pvBuffer is
NULL, then cbBuffer will be zero (but the converse is not necessarily true, as was
mentioned in pvBuffer).

iMethod the zero-based method number in the interface which is being invoked.
rpcFlags indeterminate. Neither to be read nor to be changed by the callee.
Argument Type Description
pMessage RPCOLEMESSAGE* as in IRpcStubBuffer::Invoke().
iid REFIID contains the iid of the interface being called.
pChannel IRpcChannelBuffer* as in IRpcStubBuffer::Invoke(). The COM RPC channel

implementation on the server side.
pInterface void * This contains the pointer to the COM interface instance which

contains the pointer to the method that will be invoked by this
particular remote procedure call. Debuggers can use this
information in conjunction with the iMethod field of the pMessage
structure to get to the address of the method to be invoked. May
not be NULL.

pUnkObject IUnknown * this pointer is currently NULL. In the future this might be used to
pass the controlling IUnknown of the server object whose method
is being invoked.

pvBuffer void * the pointer to the incoming debug information. Is undefined
(may or may not be NULL) if cbBuffer is zero.

cbBuffer ULONG the size of the data pointed to by pvBuffer. May be zero, but as
described above, a size of zero can only passed in the case that
debugging is already enabled.

DebugORPCServerGetBufferSize
ULONG DebugORPCServerGetBufferSize(pMessage, iid, pChannel, pInterface, pUnkObject)
Called on the server side from within IRpcChannelBuffer::GetBuffer(). See the above overview for further
details.
The GUID for this notification is 22080240-9674-101A-B07B-00DD01113F11:

GUID __private_to_macro__ = { /* 22080240-9674-101A-B07B-00DD01113F11 */
 0x22080240,
 0x9674,
 0x101A,
 0xB0,
 0x7B,
 {0x00, 0xDD, 0x01, 0x11, 0x3F, 0x11}
 };

Copyright © 1995 Microsoft Corporation Page: 32 DRAFT
All Rights Reserved

The COM Specification Chapter 7. Interface Remoting

Argument Type Description
pMessage RPCOLEMESSAGE* as in DebugORPCServerNotify().
iid REFIID as in DebugORPCServerNotify().
pChannel IRpcChannelBuffer* as in DebugORPCServerNotify().
pInterface void * as in DebugORPCServerNotify().
pUnkObject IUnknown * as in DebugORPCServerNotify().
return value ULONG the number of bytes that the client debugger wishes to transmit

to the server debugger. May legitimately be zero, which
indicates that no information need be transmitted. Value is
actually returned through lpcbBuffer member of an
ORPC_DBG_ALL.

DebugORPCServerFillBuffer
void DebugORPCServerFillBuffer(pMessage, iid, pChannel, pInterface, pUnkObject, pvBuffer,

cbBuffer)
Called on the server side immediately after calling IRpcStubBuffer::Invoke(). See the above overview for
further details.
The GUID for this notification is 2FC09500-9674-101A-B07B-00DD01113F11:

GUID __private_to_macro__ = { /* 2FC09500-9674-101A-B07B-00DD01113F11 */
 0x2FC09500,
 0x9674,
 0x101A,
 0xB0,
 0x7B,
 {0x00, 0xDD, 0x01, 0x11, 0x3F, 0x11}
 };

Argument Type Description
pMessage RPCOLEMESSAGE* as in DebugORPCServerNotify().
iid REFIID as in DebugORPCServerNotify().
pChannel IRpcChannelBuffer* as in DebugORPCServerNotify().
pInterface void * as in DebugORPCServerNotify().
pUnkObject IUnknown * as in DebugORPCServerNotify().
pvBuffer void * the debug-data buffer which is to be filled. Is undefined (may or

may not be NULL) if cbBuffer is zero.
cbBuffer ULONG the size of the data pointed to by pvBuffer.

DebugORPCClientNotify
void DebugORPCClientNotify(pMessage, iid, reserved, pUnkProxyObject, hresult, pvBuffer, cbBuffer)
Called on the client side immediately before returning from IRpcChannelBuffer::SendReceive(). See the above
overview for further details.
The GUID for this notification is 4F60E540-9674-101A-B07B-00DD01113F11:

GUID __private_to_macro__ = { /* 4F60E540-9674-101A-B07B-00DD01113F11 */
 0x4F60E540,
 0x9674,
 0x101A,
 0xB0,
 0x7B,
 {0x00, 0xDD, 0x01, 0x11, 0x3F, 0x11}
 };

DRAFT Page: 33 Copyright © 1995 Microsoft Corporation
 All Rights Reserved

Chapter 7. Interface Remoting The COM Specification

Argument Type Description
pMessage RPCOLEMESSAGE* as in DebugORPCClientGetBufferSize().

iid REFIID as in DebugORPCClientGetBufferSize().

reserved void * reserved for future use.
pUnkProxyObject IUnknown * as in DebugORPCClientGetBufferSize().

hresult HRESULT the HRESULT of the RPC call that just happened.
pvBuffer void * the pointer to the incoming debug information. Is undefined

(may or may not be NULL) if cbBuffer is zero.
cbBuffer ULONG the size of the data pointed to by pvBuffer.

1.11.5Special Segments
The COM Library system DLLs have code in specially named segments (sections in COFF terminology)
to aid debuggers. The remoting code in the COM interface proxy and interface stub DLLs and other
appropriate parts of the runtime are put in segments whose name begins with “ .orpc”24. These segments
are henceforth referred to as .orpc segments. A transition of the instruction pointer from a non .orpc
segment to a .orpc segment indicates that the program control is entering the RPC layer. On the client side
such a transition implies that a RPC call is about to happen. 25 On the server side if a function is returning
back to a .orpc segment it implies that the call is going to return back to the client side. Application
writers who write their own remoting code can also avail of this feature by putting their remoting specific
code in a .orpc segment.
Debuggers can use this naming convention regarding which code lies in COM RPC to aid in their user
interface as to what code they choose to show the user and what code they do not. When the debugger
reaches the code address after handling the DebugOrpcServerNotify() exception it should check if it is still in
a .orpc segment. This implies that the instruction pointer is still in code that to the programmer is part of
the local-remote transparency magic provided by COM, and so should be skipped by the debugger.
Similar behavior on the client side after the DebugOrpcClientNotify() exception is also desirable.

1.11.6Registry specific information
Windows NT and Windows ‘95 provide facilities to spawn a debugger when an application faults.
Familiarity with the post-mortem debugging support on these systems is assumed in this section.
COM RPC debuggers make use of this mechanism in order to start the debugging of a client or server
application that is not presently being debugged. A common scenario is that of a user wanting to step into
a RPC call as she is debugging. The client side debugger is notified about the RPC call and sends
debugger specific information with the packet. A DebugOrpcServerNotify() notification is raised in the server
process. If the server application is already being debugged, it recognizes this as a COM RPC notification
and handles it. However if the server application is not being debugged, the system will launch the
debugger specified in the AeDebug entry. The debugger will then get the exception notification and handle
it.
To avoid having malicious clients being able to force the debugging of a remote server, additional
safeguards are required. The COM RPC system checks that the registry key DebugObjectRPCEnabled exists
on the system.26 If this key does not exist, the debug notifications are disabled. Thus, debugging will only
take place if explicit action has been taken on a given machine to enable it, and so a remote client cannot
cause debugging (and thus denial of service) to occur on an otherwise secure machine.
The full path to this key for a Windows NT system is:

Software\Microsoft\Windows NT\CurrentVersion\DebugObjectRPCEnabled.

For Windows ‘95 the path to this key is:
Software\Microsoft\Windows\CurrentVersion\DebugObjectRPCEnabled.

24 This is so segment names such as .orpc1, .orpc2... can be used if the remoting code needs to be split up into different segments for
swap tuning, etc.

25 It is not guaranteed that a RPC call will happen for every such transition. The debugger should deal with the case where it
receives no notification about an RPC call.

26 In Windows NT, the registry is securable.

Copyright © 1995 Microsoft Corporation Page: 34 DRAFT
All Rights Reserved

The COM Specification Chapter 7. Interface Remoting

The client side debugger should also ensure that the AeDebug\Debugger entry on its machine is set
appropriately.
Before sending any notification, COM sets the AeDebug\Auto entry to 1. This is done in order that the
system does not put up a dialog box to ask the user if she wants to debug the server application. Instead it
directly launches the debugger.
The scenario where the user steps out of the server application into to a client application which is not
being debugged currently is symmetrically identical the preceding insofar as launch of the debugger is
concerned.

1.11.7Format of Debug Information
This section discusses the format of the debug information which the debugger puts into the buffer in the
DebugORPCClientFillBuffer and DebugORPCServerFillBuffer calls. The structure of this data is as follows, here
specified in an IDL-like manner.27 For historical reasons, this structure has 1-byte alignment of its
internal members. Again, for historical reasons, the data is always transmitted in little-endian byte order.

#pragma pack(1) // this structure defined with 1-byte packing alignment
struct {
 DWORD alwaysOrSometimes; // controls spawning of debugger
 BYTE verMajor; // major version
 BYTE verMinor; // minor version
 DWORD cbRemaining; // inclusive of byte count itself
 GUID guidSemantic; // semantic of this packet
 [switch_is(guidSemantic)] union { // semantic specific information

 // case “step” semantic, guid = 9CADE560-8F43-101A-B07B-00DD01113F11
 BOOL fStopOnOtherSide; // should single step or not?

 // case “general” semantic, guid = D62AEDFA-57EA-11ce-A964-00AA006C3706
 USHORT wDebuggingOpCode; // should single step or not, etc.
 USHORT cExtent; // offset=28
 BYTE padding[2]; // offset=30, m.b.z.
 [size_is(cExtent)] struct {
 ULONG cb; // offset=32
 GUID guidExtent; // the semantic of this extent
 [size_is(cb)] BYTE *rgbData;
 };

};
}

The first DWORD in the debug packet has a special meaning assigned to it. The rest of the debug packet is
treated as a stream of bytes by COM and is simply passed across the channel to the debugger on the other
side. If the first DWORD contains the value ORPC_DEBUG_ALWAYS (this is a manifest constant defined in
the header files) then COM will always raise the notification on the other side (use of the four bytes
“MARB” is for historical reasons synonymous with use of ORPC_DEBUG_ALWAYS). If the first DWORD in
the debug packet contains the value ORPC_DEBUG_IF_HOOK_ENABLED, then the notification is raised on
the other side of the channel only if COM debugging has been enabled in that context; that is only if
DllDebugObjectRPCHook has been called in that process with fTrace = TRUE. It is the debugger’s
responsibility to include enough memory for the first DWORD in its response to the
DebugOrpcClientGetBufferSize or DebugOrpcServerGetBufferSize notifications.
The two bytes immediately following the initial DWORD contain the major and minor version numbers of
the data format specification.
For packets in the format of the current major version, this is followed by

· A DWORD which holds the count of bytes that follow in this data, and which is inclusive of this
byte count itself.

· A GUID that identifies the semantic of the packet.
· Semantic specific information. The layout of this information is dependent on the GUID that

specifies the semantic. These are as follows:

27 One can think of this as IDL with a) default packing override, and b) the ability to have a union keyed by a GUID. This
will be made more precise in future drafts of this specification.

DRAFT Page: 35 Copyright © 1995 Microsoft Corporation
 All Rights Reserved

Chapter 7. Interface Remoting The COM Specification

Semantic Meaning
Step This semantic indicates that the single stepping is to be performed or not. The GUID of this

semantic is 9CADE560-8F43-101A-B07B-00DD01113F11. The data of this semantic consists of a
boolean value which indicates in the “step out of a server” case whether execution should continue
once the other side is reached or one should remain stopped.

General This semantic, which has GUID D62AEDFA-57EA-11ce-A964-00AA006C3706, allows for series of
tagged bags of data to be passed. Each is byte counted, and has associated with it a GUID.
wDebuggingOpCode allows for one of a series of operations to be specified. Existing-defined
opcodes are as follows. Future opcodes are to be allocated by a central coordinating body. 28

Opcode Meaning
0x0000 No operation
0x0001 Single step, stop on the other side, as in the “Step” semantic.

Extents presently defined for use in the General semantic are as follows:
Extent Meaning
Interface
pointer

This semantic has GUID 53199051-57EB-11ce-A964-00AA006C3706.
The contents of rgbData for this extent is simply an OBJREF, which is the data structure which
describes a marshaled interface pointer, the data that results from calling CoMarshalInterface
(OBREFs are described later in this specification). Usually, this OBJREF is either the self-enclosed
LONGOBJREF variation or a custom-marshaled variation, but this is not required. The
LONGOBJREF usually contains a reference count of zero, allowing this information to be freely
discared without a leakage of state. Remember that OBJREFs are always in little-endian byte order.
An OBJREF is converted into its corresponding interface pointer using CoUnmarshalInterface.

With the Interface Pointer extent, an object can be created in the source debugger’s space that relates to
the call being made. It can then be marshaled, again, in the source debugger’s process, not the source
debuggee; this yields an OBJREF. The OBJREF is then transmitted in the course of the call as an extent in
the passed debug information. On the destination side, it is conveyed to the destination debugger, who
unmarshals it in its process. The result is a COM remoting connection from the source debuggers process
to the destination debugger’s process that is semantically tied to a particular COM call that needs to be
debugged. (TBD) Interfaces on this object can be then be used to provide stack walk-backs, remote
memory manipulation, or other debugging functionality.

28 This is presently Microsoft Corporation.

Copyright © 1995 Microsoft Corporation Page: 36 DRAFT
All Rights Reserved

	1 Interface Remoting
	1.1 How Interface Remoting Works
	1.2 Architecture of Custom Object Marshaling
	1.3 Architecture of Standard Interface / Object Marshaling
	1.4 Architecture of Handler Marshaling
	1.5 Standards for Marshaled Data Packets
	1.6 Creating an Initial Connection Between Processes
	1.7 Marshaling Interface and Function Descriptions
	1.7.1 IPSFactoryBuffer Interface
	IPSFactoryBuffer::CreateProxy
	IPSFactoryBuffer::CreateStub

	1.7.2 IRpcChannelBuffer interface
	RPCOLEMESSAGE and related structures
	IRpcChannelBuffer::GetBuffer
	IRpcChannelBuffer::SendReceive
	IRpcChannelBuffer::FreeBuffer
	IRpcChannelBuffer::GetDestCtx
	IRpcChannelBuffer::IsConnected

	1.7.3 IRpcProxyBuffer Interface
	IRpcProxyBuffer::Connect
	IRpcProxyBuffer::Disconnect

	1.7.4 IRpcStubBuffer interface
	IRpcStubBuffer::Connect
	IRpcStubBuffer::Disconnect
	IRpcStubBuffer::Invoke
	IRpcStubBuffer::IsIIDSupported
	IRpcStubBuffer::CountRefs
	IRpcStubBuffer::DebugServerQueryInterface
	IRpcStubBuffer::DebugServerRelease

	1.8 Marshaling - Related API Functions
	CoMarshalInterface
	CoUnmarshalInterface
	CoDisconnectObject
	CoReleaseMarshalData
	CoGetStandardMarshal
	CoGetMarshalSizeMax

	1.9 IMarshal interface
	IMarshal::GetUnmarshalClass
	IMarshal::MarshalInterface
	IMarshal::GetMarshalSizeMax
	IMarshal::UnmarshalInterface
	IMarshal::Disconnect
	IMarshal::ReleaseMarshalData

	1.10 IStdMarshalInfo interface
	IStdMarshalInfo::GetClassForHandler

	1.11 Support for Remote Debugging
	1.11.1 Implementation
	DllDebugObjectRPCHook

	1.11.2 Architectural Overview
	1.11.3 Calling Convention for Notifications
	1.11.4 Notifications
	DebugORPCClientGetBufferSize
	DebugORPCClientFillBuffer
	DebugORPCServerNotify
	DebugORPCServerGetBufferSize
	DebugORPCServerFillBuffer
	DebugORPCClientNotify

	1.11.5 Special Segments
	1.11.6 Registry specific information
	1.11.7 Format of Debug Information

